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It is estimated that about 66% of the number of people with dementia globally live in regions within 
the low-and-middle-income countries (LMIC). The estimates further suggest that about 1 million ad-
ditional cases are recorded annually in these LMICs, with approximately 60-70% of the dementia cas-

es being due to Alzheimer disease, AD [1]. Despite this high incidence of AD, treatment options are cur-
rently limited. This is notwithstanding the fact that numerous clinical trials have taken place, are still on 
going or planned [2]. However, the rate of failure of clinical trials and predictions based on available re-
sults from randomised control trials suggest that an immediate breakthrough to obtaining treatment drugs 
for AD is unlikely [3].

While the symptoms of dementia appear to be well known, including decline in activities of daily living 
and social functioning, the exact cause remains unknown [4]. However, there is strong evidence based 
on several epidemiological studies to suggest that complex interactions exist between exposures such as 
adverse environmental factors and lifestyle choices and how these contribute to the risk and timing of 
dementia onset [5,6]. A comprehensive account of the various risk factors that interact to influence the 
risk profile and the timing of dementia onset is provided in the recently published Lancet Commission 
report [4]. The report furthermore suggests that the effect of these risk factors in terms of their contribu-

tion to dementia are beginning to be understood through complex mod-
elling. These risk factors can be categorised into modifiable (such as 
lifestyle) and non-modifiable (such as genetics). The ability to alter the 
modifiable risk factors has been demonstrated theoretically to have in-
fluence on the onset of dementia. For example, it may be possible to 
reduce dementia prevalence by 50% if the onset was to be delayed by 
5 years based on population-attributable risk estimation [7].

In the absence of strong epidemiological data from LMIC, evidence from 
numerous epidemiological studies carried out in high-income-countries 
(HIC) point to the fact that prevention is vitally important to reducing 

Establishing norms for low- and mid-
dle-income countries’ populations for 
these risk factors and developing 
monitoring mechanisms capable of 
providing early warning signs is an av-
enue to the development of strategies 
that can focus on early interventions.
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Photo: LMICs leapfrogging with collaborative support 
and lessons leaned  from HICs to tackle dementia (photo 
taken from wpclipart collections: used under the terms 
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the dementia burden. These findings may be extended to LMIC and this 
article discusses these opportunities and how they can be applied.

MODIFIABLE RISK FACTORS

It has now been established that the onset of dementia begins much earlier 
in life than had previously been assumed [5]. This is further supported by 
evidence from clinicopathologic studies, which suggest that AD lesions de-
velop much earlier in specific regions of the brain which meet neuropatho-
logical AD diagnosis criteria even in the absence of dementia [8]. Mean-
while, numerous studies have also reported the effect of modifiable risk 
factors on the structural integrity of the brain. Examples include a 20-year 
longitudinal study, which found that cardiovascular risk factors such as hy-
pertension, BMI from midlife to late life also increased the risk of severe 
white matter lesion in the brain [9]. A recent study also found a correlation 
between hypertension and reduction in brain reserve [10], and therefore 
adopting a healthy lifestyle may reduce the chances of hypertension which 
in turn also delay the onset of AD. Similar trends have been observed in 
nutrition studies [11]. Lifestyle factors such as physical activity through 
longitudinal observational studies have similarly been demonstrated to have 
improved cognitive reserves and reduction in dementia risk [12]. Further-
more, studies on lifestyle have also found smoking and excessive alcohol 

intake to have significant association with cognition and dementia [13], with findings from education also 
showing some mixed effect on cognition and cognitive preservations [14]. Establishing norms for LMIC 
populations for these risk factors and developing monitoring mechanisms capable of providing early 
warning signs is an avenue to the development of strategies that can focus on early interventions.

DEMENTIA EARLY INTERVENTION THROUGH BIG DATA AND AI IN LMIC

HIC continue to explore advanced techniques in neuroimaging as wells as neuropsychological and other 
data sources to effectively monitor brain health to detect early onset of dementia [15,16]. Recent advanc-
es in Big Data and AI technologies coupled that with the ever-increasing speed in data generation has seen 
exponential growth in research and development of these technologies within the context of dementia 
prevention. Researchers in HIC have already taken advantage of Big Data technologies and have devel-
oped data driven approaches to dementia prevention initiatives across various HICs and are able to pro-
cess and manage these data with high throughput [17]. Current examples of such initiative include the 
ongoing European Prevention of Alzheimer Disease, EPAD [18] and PREVENT research programme [5]. 
These projects aim to generate not only large and high quality, but also phenotypically deep, data sets and 
are employing state-of-the-art Big Data technologies to process and make these data available through se-
cured analytics environment for hypothesis testing.

Similar trends have also been observed in the analytics space where AI including sophisticated Machine 
Learning (ML) algorithms and frameworks such as deep learning continue to be developed and improved. 
A systematic review by Pellegrini et al. [19] found over 110 publications on various initiatives where ML 
approaches have been employed to develop prediction models for cognitive impairment and AD using 
neuroimaging data. These research efforts are being extended to other data sources and domains such as 
linguistic analysis of text messages; speech analysis [20,21]; and also through the human eyes using ret-
inal imaging [22] with promising results.

While ML models based on neuroimaging data may not be practical in LMIC due to the huge cost asso-
ciated with them, having alternative low cost approaches to acquiring modifiable risk factors data and 
analysing these data sources to help monitor populations brain health for the purposes of screening for 
dementia risks would be a useful epidemiological tool. For example, wearable devices and smartphones 
are now able to acquire real time data on daily activities, conversations through text messages and speech. 
The proliferation of the internet and smartphone usage in LMIC presents great opportunities for collect-
ing these types of data using these devices. Big Data technologies allow efficient integration of data that 
come from a variety of sources and in different types and formats scale [23]. Harmonising these sources 
of data provides an excellent opportunity to develop ML methods and prediction models. AI and machine 
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Low- and middle-income coun-
tries can employ a leapfrog ap-
proach to adapt in order to ben-
efit from these Big Data and AI 
technologies, which have al-
ready been tried and tested in 
high-income countries.

learning technologies are also revolutionising the approaches to the analysis of large volumes of data in 
real time, with potential benefits to dementia research, including the ability to learn patterns from large 
data sets where use of traditional statistical methods may not be possible [24]. Additionally, the efficien-
cies and consistency in the use of AI–based methods may result in reduced cost and less human errors in 
decision-making.

REGULATORY ISSUES

It is an undeniable fact that Big Data and AI have potential ethical challenges such as data privacy and 
respect for human rights. This has led to a shift in focus and a new branch of ethics known as data eth-
ics, which involves the study of moral issues around data, algorithms and practices [25]. Regardless of 
the place of application, these ethical issues remain universal and applicable in LMIC. Nevertheless, reg-
ulatory frameworks such as the recently launched General Data Protection Regulations in May 2018 to 
regulate the use of personal data across Europe [26] and practises employed in other HIC such as the 
consent approach where study participants consent to researchers keeping their personal data centrally 
for the purposed of data linkage but these are not transferred to the data users. Another approach is the 
de-identification method where personal identifiable data are removed at the point of data collection be-
fore further processing and transmission as described in [23]. These approaches can serve as good exam-
ples to follow in LMIC.

CONCLUSION

This article discussed opportunities for development of early intervention strat-
egies to address the burden of dementia in LMIC through the application of 
Big Data and AI. The potential efficiency and cost-effectiveness of this approach 
suggests that window of opportunity now exists for researchers in LMIC to 
collaborate with colleagues in HIC in this area. LMIC can employ a leapfrog 
approach to adapt in order to benefit from these Big Data and AI technologies, 
which have already been tried and tested in HIC. With this approach, the 
emerging success stories in HIC can also be replicated in LMIC.
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