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Validating hierarchical verbal autopsy expert 
algorithms in a large data set with known 
causes of death

Background Physician assessment historically has been the most 
common method of analyzing verbal autopsy (VA) data. Recently, 
the World Health Organization endorsed two automated methods, 
Tariff 2.0 and InterVA–4, which promise greater objectivity and low-
er cost. A disadvantage of the Tariff method is that it requires a train-
ing data set from a prior validation study, while InterVA relies on 
clinically specified conditional probabilities. We undertook to vali-
date the hierarchical expert algorithm analysis of VA data, an auto-
mated, intuitive, deterministic method that does not require a train-
ing data set.

Methods Using Population Health Metrics Research Consortium 
study hospital source data, we compared the primary causes of 1629 
neonatal and 1456 1–59 month–old child deaths from VA expert al-
gorithms arranged in a hierarchy to their reference standard causes. 
The expert algorithms were held constant, while five prior and one 
new “compromise” neonatal hierarchy, and three former child hier-
archies were tested. For each comparison, the reference standard data 
were resampled 1000 times within the range of cause–specific mor-
tality fractions (CSMF) for one of three approximated community 
scenarios in the 2013 WHO global causes of death, plus one random 
mortality cause proportions scenario. We utilized CSMF accuracy to 
assess overall population–level validity, and the absolute difference 
between VA and reference standard CSMFs to examine particular 
causes. Chance–corrected concordance (CCC) and Cohen’s kappa 
were used to evaluate individual–level cause assignment.

Results Overall CSMF accuracy for the best–performing expert al-
gorithm hierarchy was 0.80 (range 0.57–0.96) for neonatal deaths 
and 0.76 (0.50–0.97) for child deaths. Performance for particular 
causes of death varied, with fairly flat estimated CSMF over a range 
of reference values for several causes. Performance at the individual 
diagnosis level was also less favorable than that for overall CSMF 
(neonatal: best CCC = 0.23, range 0.16–0.33; best kappa = 0.29, 
0.23–0.35; child: best CCC = 0.40, 0.19–0.45; best kappa = 0.29, 
0.07–0.35).

Conclusions Expert algorithms in a hierarchy offer an accessible, 
automated method for assigning VA causes of death. Overall popu-
lation–level accuracy is similar to that of more complex machine 
learning methods, but without need for a training data set from a 
prior validation study.
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For decades, health officials and program managers in low 
and middle income countries (LMIC) without well–func-
tioning vital registration systems have used information on 
causes of death from verbal autopsy (VA) to allocate scarce 
resources to target the most common causes of child death. 
Simultaneously, the World Health Organization (WHO) 
and UNICEF, through their Child Health Epidemiology 
Reference Group (CHERG), have used VA data from the 
world’s public health literature to model and track the 
causes of neonatal and child death in LMIC countries [1–
4]. However, VA data collection and analysis methods, in-
cluding those of studies that have contributed input data 
to the CHERG models, have suffered from a lack of stan-
dardization and uncertainty as to the accuracy of their 
cause of death findings [5].

Until lately most studies have relied on physician analysis 
of VA findings, which has raised questions regarding the 
potential introduction of subjectivity and cultural biases 
into the VA diagnoses, as well as the monetary and health 
system costs of diverting physicians from patient care to 
the task of VA analysis [6]. Expert algorithms also have 
been used for VA analysis, with validation studies demon-
strating fair to good accuracy for the diagnosis of several 
causes of neonatal and child death [7–10]; but this method 
has more often been used in research settings, with pro-
gram environments being more comfortable with physician 
analysis. More recently, several machine learning and prob-
abilistic VA analysis methods have been developed that 
show promise for providing more accurate diagnoses, as 
well as the objectivity that comes with automated methods 
and the efficiency and cost savings of not requiring physi-
cians to conduct the analysis [11]. WHO recently modified 
its standardized VA questionnaire for use with two of these 
automated methods, Tariff 2.0 [12] and InterVA–4 [13], 
and is encouraging the use of these methods instead of the 
traditional physician review method [14].

However, questions remain as to which method or meth-
ods is most accurate, with a recent assessment emphasizing 
that different methods may work best for different age 
groups and causes of death [15]. Lastly, none of these stud-
ies examined the use of expert algorithms arranged in a hi-
erarchy to select the primary cause of death, which offers 
the same advantages as other automated methods plus the 
additional benefit, unlike the Tariff method, of not requir-
ing a training data set from a prior VA validation study, 
preferably conducted in the same geographic region or dis-
ease setting intended for the use of verbal autopsy, and dis-
tinct from all other automated methods, is based on clinical 
algorithms that can be easily explained to non–medical 
professionals. A later study did examine the performance 
of hierarchical algorithms, but in a small data set against 
physician–determined reference standard diagnoses using 
algorithms refined by physicians at the same sites, and 

missing some key neonatal causes of death [16]. Therefore, 
we undertook to validate the hierarchical expert algorithm 
VA analysis method in a large data set with objective refer-
ence standard criteria for a full range of important neonatal 
and child causes of death, and report the findings of our 
analyses in this paper.

METHODS

We used source data from the Population Health Metrics 
Research Consortium (PHMRC) study to validate causes of 
under–five year–old deaths from verbal autopsy expert al-
gorithms arranged in a hierarchy compared to reference 
standard causes of death. The design and primary results 
of the PHMRC study have been described in detail [17]. In 
brief, the study identified hospital deaths of all ages, includ-
ing 1629 neonatal deaths and 1456 1–59 months old child 
deaths, at six study sites in five countries on three conti-
nents, determined the main or underlying reference stan-
dard cause for each death from available clinical, labora-
tory and imaging data, and later visited the household of 
each decedent to conduct a verbal autopsy interview. A 
large portion of these data are publicly available [18], al-
though some questions about its contents have risen from 
the verbal autopsy research community [19]. For this rea-
son, we conducted extensive cleaning of the PHMRC data 
to make it more suitable for our expert algorithm analysis, 
and have provided the cleaned data, documentation and 
cleaning information online [20]). We excluded stillbirths 
and deaths of persons older than five years from our anal-
ysis, restricting our interest to deaths of live born children 
who died before age five, analyzed separately for neonates 
0 to 27 days and children 1 to 59 months old.

Verbal autopsy cause of death assignment

Verbal autopsy (VA) expert algorithms are combinations of 
illness signs and symptoms judged by verbal autopsy re-
searchers to be predictive of particular causes of death. The 
algorithms validated in the current study were based on 
those developed by researchers for prior VA validation 
studies, further consultation with additional verbal autop-
sy experts, and a literature review to identify illness signs 
and symptoms commonly associated with particular neo-
natal and child illnesses. The sources and algorithms them-
selves are provided in a recent publication [21]. We used 
the expert algorithms to estimate cause of death given each 
individual’s PHMRC VA questionnaire responses. While the 
PHMRC questionnaire includes close–ended questions on 
illness signs and symptoms, an open–ended narrative re-
sponse and recording of data from medical records and 
death certificates available in the home, the expert algo-
rithms are based only on the responses to close–ended 
questions on illness signs and symptoms.
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Because the algorithms determine all contributing causes, 
in the event that more than one cause was identified the 
primary cause was chosen according to a pre–specified hi-
erarchy. We determined the primary causes of neonatal 
death utilizing the same algorithms across five hierarchies 
for neonatal deaths that are currently in use: Arifeen et al. 
[22], Baqui et al. [23], Kalter et al. [21], Lawn et al. [24], 
and Liu et al. [25]; and the primary causes of child death 
(1–59 months of age) utilizing the hierarchies for this age 
group described by Arifeen et al. [22], Kalter et al. [21], 
and Liu et al. [25]. Other things being equal, estimating 

more causes at once will yield lower accuracy than estimat-
ing fewer causes [26]. Therefore, for neonatal deaths, we 
also examined a compromise hierarchy that included four 
cause categories in common across all five neonatal hierar-
chies (Table 1).

Reference standard cause of death

We used the reference standard causes of death from the 
PHMRC study to approximate the cause of death distribu-
tion in community settings, where verbal autopsy is most 
relevant. Because the PHMRC study was hospital– as op-

Table 1. Cause assignment hierarchies for determining the main cause of death among co–morbid causes in neonates 0–27 days and 
1–59 month–old children

Arifeen et Al. 2004 [22] BAqui et Al. 2006 [23] KAlter et Al. 2015 [21] lAwn et Al. 2006 [24] liu et Al. 2015 [25] Compromise

Neonates 0–27 days:

Neonatal tetanus Neonatal tetanus, 
Congenital abnormality

Neonatal tetanus Congenital 
abnormality

Neonatal tetanus Congenital 
abnormality

Congenital abnormality Preterm delivery Congenital abnormality Neonatal tetanus Congenital abnormality Birth asphyxia

Birth asphyxia Birth asphyxia Birth asphyxia, birth 
injury

Preterm birth Birth asphyxia, birth 
injury

Prematurity

Birth injury Birth injury Meningitis Birth asphyxia Diarrhea, ARI Sepsis, pneumonia, 
meningitis

ARI, diarrhea Sepsis or pneumonia Diarrhea Sepsis, pneumonia, 
meningitis

Meningitis

Possible diarrhea, 
possible ARI, sepsis

Diarrhea Pneumonia Diarrhea Possible pneumonia, 
possible diarrhea

Premature birth/LBW Unspecified Possible diarrhea Other Prematurity/LBW

Other causes Possible pneumonia Sepsis, other possible 
serious infections

Unspecified Sepsis Unspecified

Jaundice

Hemorrhagic disease of 
the newborn

Sudden unexplained death

Preterm delivery

Unspecified

Children 1–59 months:

Injury Injury Injury

ARI, diarrhea, measles AIDS Measles, diarrhea, ARI

Possible serious 
infections

Malnutrition (underlying) Meningitis

Malnutrition Measles Malaria

Other causes Meningitis AIDS

Unspecified Dysentery Possible diarrhea/ARI

Undetermined Diarrhea Other possible serious 
infections

Pertussis Unspecified

Pneumonia

Malaria

Possible dysentery

Possible diarrhea

Possible pneumonia

Hemorrhagic fever

Other infection

Residual infection

Malnutrition

Unspecified

LBW – low birth weight, ARI – acute respiratory infection
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posed to community based, and the cause distribution in the 
community and hospital may differ, we resampled from the 
study deaths to represent a variety of cause distributions.

We approximated three specific mortality settings with the 
PHMRC data: (1) communities with high under five mor-
tality where malaria is endemic, (2) communities with high 
under five mortality where malaria is not endemic, and (3) 
communities with moderate under five mortality. We used 
the Child Health Epidemiology Reference Group (CHERG) 
definition of high under–five mortality (more than 35 
deaths per 1000 live births) [4], took moderate mortality 
as 20 to 35 deaths per 1000, and defined malaria endemic-
ity as greater than 5 percent of under–five deaths due to 
malaria. In addition to these three specific scenarios of in-
terest, we also considered a fourth general scenario, where 
all cause-specific mortality fractions were randomly varied 
between 5% and 40%.

Estimated cause proportions of death for all countries in the 
world, including those where most deaths occur outside the 
formal health sector, are available from the WHO [4]. We 
used these estimated causes of neonatal and child mortality 
as a guide in choosing cause distributions in our scenarios 
of interest. To generate a possible set of verbal autopsies to 
represent a given death distribution in a particular mortal-
ity scenario, we selected one country at random among all 
those appropriate, and resampled the PHMRC question-
naire data to correspond approximately to that cause of 
death distribution. For neonates, we included deaths due 
to prematurity, birth asphyxia, congenital malformations, 
meningitis, pneumonia and sepsis; and for children we used 
deaths from HIV, diarrhea, measles, meningitis/encephalitis, 
malaria, pneumonia, injuries, other infectious causes, and 
non–infectious causes. Some causes of interest for Liu et al. 
[4] do not occur in the PHMRC study data, requiring that 
we use relative proportions of causes reported by the PHM-
RC, while unreported causes were not considered. For ex-
ample, the tetanus mortality fraction for neonatal deaths as 
reported by WHO is as high as 8%, but there are no neo-
natal deaths due to tetanus in the PHMRC data.

The PHMRC data include neonatal deaths due to co–morbid 
preterm delivery, birth asphyxia and/or sepsis; and child 
deaths due to co–morbid pneumonia and diarrhea. For 
deaths with co–morbid reference standard causes of death, 
we used the ICD–10 rules to assign a single underlying cause 
of death [27]. In accordance with the rule that the mode of 
perinatal death, including prematurity, should not be classi-
fied as the main disease or condition unless it was the only 
condition known, we assigned deaths due to co–morbid pre-
term/birth asphyxia to birth asphyxia, preterm/sepsis to sep-
sis, and preterm/sepsis/birth asphyxia proportionately to 
sepsis and birth asphyxia. Deaths from conditions directly 
due to prematurity, such as Respiratory Distress Syndrome, 
were classified as being due to preterm delivery. For child 
deaths, we proportionately reallocated co–morbid pneumo-

nia/diarrhea deaths to pneumonia or diarrhea. Using these 
verbal autopsies for harmonized causes of death, we repeat-
ed our selection of cause of death distribution and resam-
pling 1000 times for each of the four scenarios. Table 2 sum-
marizes our harmonization of the verbal autopsy algorithms 
and reference standard causes of death.

Accuracy of VA cause of death 
determination

After resampling the reference standard cause of death data 
for neonates and children according to the four mortality 
scenarios as described above, we then, separately for neo-
natal and child deaths and for each hierarchy in each sce-
nario, used the expert algorithms to estimate cause of death 
in the resampled reference standard cause of death data 
given each individual’s VA questionnaire responses. We 
used four metrics to examine the validity of the VA cause 
of death estimates, two at the population level and two at 
the level of individual cause assignment. Cause-specific 
mortality fraction (CSMF) accuracy, as defined by Murray 
et al. [28], is an overall summary of the estimated and ref-
erence standard cause distributions with larger values in-
dicating VA CSMF measurements closer to the reference 
standard. CSMF accuracy is the sum of absolute errors by 
cause, scaled by the extent of possible error given the small-
est cause fraction, and subtracted from one. It is generally 
interpretable as percent accuracy. To assess the validity of 
VA estimates of particular causes of death we examined the 
absolute difference between VA and reference standard 
CSMFs for these causes.

The last two metrics estimate the accuracy of VA cause of 
death assignment at the level of individual deaths. Cohen’s 
kappa is a general measure of agreement between estimat-
ed and reference standard causes [29]. Large values of kap-
pa indicate more agreement, where in general values less 
than zero indicate no agreement, values between 0 and 0.2 
are rated as minimal agreement, 0.2 to 0.4 as fair, 0.4 to 
0.6 as moderate, 0.6 to 0.8 as substantial, and 0.8 to 1 ap-
proach exact agreement [30]. Chance corrected concor-
dance (CCC) is another measure of agreement between VA 
and reference standard causes at the individual level. This 
statistic is closely related to Cohen’s kappa and average sen-
sitivity across causes or categories [28]. Similar to kappa, 
large values indicate more agreement. The CCC scale is 
from 1/(1–N) to 1, for the number of causes N, while the 
scale for Cohen’s kappa is from –1 to 1. We used these two 
metrics only to generate overall summaries of VA accuracy 
for all causes together.

Ethics statement

The study data are publically accessible and include no 
personal identifiers. Therefore, no ethical review of the 
study protocol or informed consent was necessary.
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RESULTS

Neonates

Table 3 shows summary results for the expert algorithm 

cause of death assignments for all causes together from four 

mortality scenarios and three measures of accuracy. By the 

CSMF measure, the Baqui and Lawn hierarchies performed 

best in the moderate and general mortality scenarios, and 

the compromise hierarchy did best in both high mortality 

scenarios. These three hierarchies all did their best in the 

high mortality scenarios, whereas the Kalter and Liu hier-

archies did their best in the general scenario, in which their 

performance nearly equaled that of the Lawn hierarchy. All 

the hierarchies did their worst, or nearly so, in the moder-

ate mortality scenario. Figure 1 also summarizes CSMF 

accuracy for neonatal deaths in these scenarios.

The Baqui and Lawn hierarchies performed best by the Co-

hen’s kappa measure, followed closely by the compromise 

Table 2. Correspondence of verbal autopsy and reference standard diagnoses in the hierarchies

VerBAl Autopsy Algorithm(s) phmrC referenCe stAndArd group(s) plACement in hierArChy

Neonates 0–27 days:

Neonatal tetanus No PHMRC neonatal tetanus cases –

Congenital malformation Congenital malformation Malformation

Birth injury No PHMRC birth injury cases –

Birth asphyxia Birth asphyxia, preterm delivery (without RDS) and birth as-
phyxia, preterm delivery (without RDS) and sepsis and birth 
asphyxia (allocated to birth asphyxia according to the distri-
bution of other deaths due to sepsis and birth asphyxia)

Birth asphyxia

Meningitis Meningitis (serious infection) Meningitis

Diarrhea No PHMRC neonatal diarrhea cases –

Pneumonia; ARI Pneumonia (serious infection) Pneumonia

Possible diarrhea No PHMRC neonatal diarrhea cases –

Possible pneumonia, possible ARI Pneumonia (serious infection) Possible pneumonia (later to combine with 
pneumonia)

Sepsis Sepsis (serious infection), sepsis with local bacterial infection, 
preterm delivery (with or without RDS) and sepsis, preterm 
delivery (without RDS) and sepsis and birth asphyxia (allo-
cated to sepsis according to the distribution of other deaths 
due to sepsis and birth asphyxia)

Sepsis

Jaundice No PHMRC jaundice cases –

Hemorrhagic disease of the newborn No PHMRC hemorrhagic disease of the newborn cases –

Sudden unexplained death No PHMRC sudden unexplained death cases –

Preterm delivery, Preterm delivery with 
complication specific to prematurity (RDS)

Preterm delivery (<33 weeks gestational age [GA]) with or 
without RDS, preterm delivery (33–36 weeks GA) with RDS

Preterm delivery

Children 1–59 months:

Injury Bite of a venomous animal, burn, drowning, fall, poisoning, 
road traffic injury, violent death

Injury

AIDS AIDS AIDS

Malnutrition (underlying) No PHMRC malnutrition cases –

Measles Measles Measles

Meningitis Encephalitis, meningitis Meningitis

Diarrhea or dysentery Diarrhea/dysentery Diarrhea/dysentery

Pneumonia or diarrhea Pneumonia and diarrhea Allocated to pneumonia and diarrhea/dysen-
tery according to the distribution of other 
deaths due to pneumonia and diarrhea/dys-
entery

Pneumonia Pneumonia Pneumonia

Malaria Malaria Malaria

Possible diarrhea or dysentery Diarrhea/dysentery Possible diarrhea or dysentery (later to com-
bine with diarrhea/dysentery)

Possible pneumonia Pneumonia Possible pneumonia (later to combine with 
pneumonia)

Pertussis, hemorrhagic fever, other 
infection

Hemorrhagic fever, sepsis, tuberculosis, other infectious 
diseases

Other infectious causes

Residual infection (possible malaria) Malaria Possible malaria (later to combine with ma-
laria)

PHMRC – Population Health Metric Research Consortium, RDS – respiratory distress syndrome, ARI – acute respiratory infection

www.jogh.org •  doi: 10.7189/jogh.06.010601	 5	 June 2016  •  Vol. 6 No. 1 •  010601



V
IE

W
PO

IN
TS

PA
PE

RS
Kalter et al.

hierarchy. Generally, for all algorithms, the Cohen’s kappa 

was between 0.1 and 0.4, indicating minimal to fair agree-

ment between VA estimated and reference standard causes. 

The CCC statistic also indicates that expert algorithms in 

the Baqui and Lawn hierarchies provide estimates that are 

closer to the reference standard causes than either the Kal-

ter or Liu hierarchies, but overall the CCC statistics for all 

the hierarchies are between 0 and 0.45, indicating small to 

moderate agreement with the reference standard causes.

The median and range of absolute differences between es-

timated and reference standard CSMFs are shown in Table 

4 for each neonatal cause of death, along with the propor-

tion of deaths that were not classified by each hierarchy. 

Figure 2 shows the simulated reference standard and esti-

mated CSMF in the general mortality scenario. This differ-

ence is identical across all hierarchies for the percent of 

deaths due to congenital malformations, because this cause 

is the first in each hierarchy. The Baqui and Lawn hierar-

chies perform best for birth asphyxia, and Baqui is best for 

sepsis/pneumonia. The compromise hierarchy is best for 

prematurity, and the Lawn and compromise hierarchies are 

jointly best for sepsis/meningitis/pneumonia.

Figure 1. Cause-specific mortality fraction accuracy for six 
neonatal expert algorithm hierarchies in the resampled 
Population Health Metrics Research Consortium data, for 
1000 simulated cause distributions from four neonatal 
mortality scenarios, and four neonatal causes (birth 
asphyxia, congenital malformation, prematurity, sepsis/
pneumonia or sepsis/pneumonia/meningitis). Boxes 
represent interquartile ranges, with a line at the median. 
Whiskers represent 95% confidence intervals for the 
median values, and outliers are shown by dots.

Table 3. Agreement* of reference standard and algorithm cause of death assignment among neonates

sCenArio Arifeen et Al. 2004 [22] BAqui et Al. 2006 [23] KAlter et Al. 2015 [21] lAwn et Al. 2006 [24] liu et Al. 2015 [25] Compromise

Cause-specific mortality fraction accuracy:

High U5MR with malaria 0.68 (0.53–0.76) 0.87 (0.77–0.93) 0.68 (0.53–0.76) 0.87 (0.77–0.93) 0.71 (0.56–0.79) 0.89 (0.77–0.93)

High U5MR without malaria 0.65 (0.45–0.74) 0.84 (0.75–0.93) 0.65 (0.45–0.74) 0.84 (0.75–0.93) 0.68 (0.49–0.78) 0.86 (0.71–0.93)

Moderate U5MR 0.49 (0.38–0.63) 0.78 (0.69–0.87) 0.49 (0.38–0.63) 0.78 (0.69–0.87) 0.53 (0.41–0.67) 0.74 (0.61–0.85)

General 0.71 (0.39–0.96) 0.80 (0.57–0.96) 0.74 (0.41–0.94) 0.77 (0.61–0.93) 0.75 (0.44–0.95) 0.76 (0.60–0.93)

Cohen’s kappa:

High U5MR with malaria 0.17 (0.12–0.22) 0.29 (0.23–0.35) 0.17 (0.12–0.22) 0.29 (0.23–0.35) 0.18 (0.13–0.23) 0.26 (0.21–0.31)

High U5MR without malaria 0.17 (0.11–0.22) 0.29 (0.24–0.36) 0.17 (0.11–0.22) 0.29 (0.24–0.36) 0.18 (0.12–0.22) 0.26 (0.21–0.32)

Moderate U5MR 0.15 (0.04–0.21) 0.28 (0.16–0.34) 0.15 (0.04–0.21) 0.28 (0.16–0.34) 0.16 (0.04–0.21) 0.24 (0.11–0.29)

General 0.14 (0.07–0.23) 0.20 (0.08–0.36) 0.15 (0.06–0.24) 0.24 (0.12–0.37) 0.16 (0.07–0.25) 0.22 (0.11–0.33)

Chance corrected concordance:

High U5MR with malaria 0.13 (0.06–0.19) 0.22 (0.16–0.28) 0.13 (0.06–0.19) 0.22 (0.16–0.28) 0.14 (0.07–0.20) 0.20 (0.14–0.26)

High U5MR without malaria 0.13 (0.09–0.18) 0.22 (0.17–0.28) 0.13 (0.09–0.18) 0.22 (0.17–0.28) 0.14 (0.09–0.19) 0.20 (0.15–0.26)

Moderate U5MR 0.13 (0.09–0.22) 0.22 (0.17–0.44) 0.13 (0.09–0.22) 0.22 (0.17–0.44) 0.14 (0.09–0.23) 0.20 (0.15–0.36)

General 0.14 (0.08–0.22) 0.23 (0.16–0.33) 0.12 (0.05–0.21) 0.23 (0.17–0.32) 0.13 (0.06–0.22) 0.21 (0.14–0.30)

U5MR – under 5 years mortality rate

*Median and range across 1000 simulated instances of the Population Health Metrics Research Consortium study data for cause-specific mortality fraction 
(CSMF) accuracy, the kappa statistic, and chance corrected concordance (CCC) by mortality scenario and hierarchical method for distributing co–morbid 
causes of neonatal death, for four causes: birth asphyxia, congenital malformation, prematurity, sepsis/pneumonia or sepsis/pneumonia/meningitis.
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Table 4. Absolute difference* between the cause-specific mortality fraction of each estimated and reference standard cause, for the 
general neonatal mortality scenario

CAuse Arifeen et Al. 2004 [22] BAqui et Al. 2006 [23] KAlter et Al. 2015 [21] lAwn et Al. 2006 [24] liu et Al. 2015 [25] Compromise

Birth asphyxia 0.11 (0.00–0.22) 0.07 (0.01–0.15) 0.11 (0.00–0.22) 0.07 (0.01–0.15) 0.11 (0.00–0.22) 0.11 (0.00–0.22)

Congenital malformation 0.13 (0.03–0.31) 0.13 (0.03–0.31) 0.13 (0.03–0.31) 0.13 (0.03–0.31) 0.13 (0.03–0.31) 0.13 (0.03–0.31)

Meningitis – – 0.09 (0.01–0.24) – 0.10 (0.01–0.24) –

Pneumonia – – 0.19 (0.01–0.32) 0.20 (0.01–0.32) –

Prematurity 0.12 (0.02–0.30) 0.08 (0.00–0.17) 0.12 (0.02–0.30) 0.08 (0.00–0.17) 0.11 (0.00–0.28) 0.05 (0.00–0.13)

Sepsis – – 0.09 (0.00–0.28) 0.11 (0.00–0.30) 0.11 (0.00–0.30)

Sepsis/pneumonia 0.18 (0.02–0.36) 0.10 (0.00–0.24) 0.12 (0.01–0.29) 0.11 (0.00–0.27) –

Sepsis/pneumonia/meningitis – – 0.22 (0.18–0.30) 0.03 (0.00–0.08) 0.19 (0.15–0.27) 0.03 (0.00–0.08)

Unspecified 0.15 (0.12– 0.19) 0.15 (0.12– 0.19) 0.14 (0.11–0.18) 0.14 (0.11–0.18) 0.14 (0.11–0.18) 0.14 (0.11–0.18)

*Median and range across one thousand simulations. Results are shown for six hierarchies as a proportion of all neonatal deaths

Figure 2. Cause-specific mortality fractions for six neonatal expert algorithm hierarchies in the resampled Population Health Metrics 
Research Consortium data, for four neonatal causes in the general neonatal mortality scenario, for 1000 simulated cause distribu-
tions.
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Children

Table 5 shows summary results for the expert algorithm 
cause assignment of four causes of child deaths in three hi-
erarchies and four mortality scenarios. We used the same 
three measures of accuracy as for neonatal deaths at the 
population and individual levels. At the population level, 
summarized by CSMF accuracy, the Kalter hierarchy per-
forms best in each scenario. This population level compar-
ison is also shown in Figure 3.

The hierarchies are not as strongly differentiated at the in-
dividual level for child deaths. There is also some counter 

Table 5. Agreement* of reference standard and algorithm cause of death assignment among children 1–59 months old

sCenArio Arifeen et Al. 2004 [22] KAlter et Al. 2015 [21] liu et Al. 2015 [25]
Cause-specific mortality fraction accuracy:

High U5MR with malaria 0.80 (0.67–0.86) 0.87 (0.75–0.94) 0.81 (0.68–0.88)

High U5MR without malaria 0.83 (0.73–0.90) 0.93 (0.79–0.97) 0.80 (0.69–0.90)

Moderate U5MR 0.84 (0.74–0.90) 0.92 (0.79–0.97) 0.80 (0.68–0.91)

General 0.66 (0.43–0.87) 0.76 (0.50–0.97) 0.69 (0.45–0.93)

Cohen’s kappa:

High U5MR with malaria 0.14 (0.06–0.25) 0.13 (0.07–0.22) 0.14 (0.08–0.22)

High U5MR without malaria 0.24 (0.09–0.35) 0.21 (0.08–0.32) 0.23 (0.09–0.34)

Moderate U5MR 0.29 (0.07–0.35) 0.25 (0.08–0.32) 0.28 (0.08–0.35)

General 0.10 (0.02–0.38) 0.10 (0.04–0.33) 0.10 (0.04–0.35)

Chance corrected concordance:

High U5MR with malaria 0.25 (0.20–0.49) 0.17 (0.12–0.39) 0.20 (0.14–0.42)

High U5MR without malaria 0.23 (0.18–0.45) 0.22 (0.17–0.46) 0.22 (0.18–0.44)

Moderate U5MR 0.40 (0.19–0.45) 0.37 (0.16–0.55) 0.39 (0.17–0.48)

General 0.24 (0.16–0.30) 0.16 (0.10–0.23) 0.19 (0.12–0.25)

U5MR – under 5 years mortality rate

*Median and range across 1000 simulated instances of the Population Health Metrics Research Consortium study data for cause-specific mortality frac-
tion (CSMF) accuracy, the kappa statistic, and chance corrected concordance (CCC) by mortality scenario and hierarchical method for distributing co–
morbid causes of child death, for four causes: pneumonia/diarrhea, measles, other infectious causes, and injury.

indication at the individual level between Cohen’s kappa 
and the CCC statistic as to which hierarchy is best in each 
mortality scenario. By Cohen’s kappa, the three hierarchies 
are very similar in the high mortality with malaria and the 
general mortality scenarios. Also by Cohen’s kappa, the Liu 
and Arifeen hierarchies are similar in the high mortality 
without malaria and moderate mortality scenarios, while 
the Kalter hierarchy has somewhat lower agreement. The 
Cohen’s kappa for these three hierarchies generally range 
from slight (less than 0.2) to fair agreement (0.2–0.4).

By the CCC statistic, Arifeen’s hierarchy has the largest me-
dian across the mortality scenarios, although the advantage 

Figure 3. Cause-specific mortality fraction accuracy for 
three expert algorithm hierarchies in the resampled 
Population Health Metrics Research Consortium data, 
for 1000 simulated cause distributions from four 
mortality scenarios, and four causes of child death 
(pneumonia/diarrhea, measles, other infectious 
causes, and injury). Boxes represent interquartile 
ranges, with a line at the median. Whiskers represent 
95% confidence intervals for the median values, and 
outliers are shown by dots.
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Figure 4. Cause-specific mortality fractions for three expert algorithm hierarchies in the resampled Population Health Metrics 
Research Consortium data, for six child causes in the general mortality scenario, for 1000 simulated cause distributions.

is small, especially for the high mortality without malaria 
and moderate mortality scenarios. Overall CCC statistics 
range from 0.06 to 0.55, indicating small to moderate 
agreement by the standards for interpreting Cohen’s kappa, 
and somewhat higher agreement than for neonates.

Figure 4 shows the simulated reference standard and esti-
mated CSMF in the general mortality scenario for six causes 
of child deaths. The median and range of absolute differ-
ences between estimated and reference standard CSMFs 
across these simulated instances of the PHMRC data for 
each cause of child death are shown in Table 6. This dif-
ference is identical across all hierarchies for the percent of 
deaths due to injuries, because this cause occupies the 

same place in the respective hierarchies. The Kalter hierar-
chy is best for pneumonia/diarrhea, meningitis/encephali-
tis, and AIDS. The Arifeen hierarchy is best for other infec-
tious causes, while the Liu hierarchy is generally best for 
malaria. The Liu hierarchy is especially accurate when ma-
laria is below 0.10 CSMF, while the Kalter hierarchy tends 
to be more accurate as malaria increases, as shown in Fig-
ure 4. Table 6 shows the median absolute difference in 
CSMF, which may mask differences depending on the ref-
erence standard CSMF.

The median absolute differences between estimated CSMF 
and reference CSMF by cause are also shown for the two 
high mortality scenarios in Table 6, both with and without 
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Table 6. Absolute difference* between the cause-specific mortality fraction of each estimated and reference standard cause, for the 
general, high mortality with malaria and high mortality without malaria child mortality scenarios

CAuse Arifeen et Al. 2004 [22] KAlter et Al. 2015 [21] liu et Al. 2015 [25]
Child – General mortality scenario:

AIDS – 0.08 (0.01–0.28) 0.08 (0.04–0.35)

Diarrhea/dysentery – 0.08 (0.01–0.15) –

Injury 0.01 (0.00–0.05) 0.01 (0.00–0.05) 0.01 (0.00–0.05)

Malaria – 0.10 (0.01–0.26) 0.04 (0.00–0.22)

Measles 0.10 (0.03–0.36) 0.10 (0.03–0.36) 0.10 (0.03–0.36)

Meningitis/encephalitis – 0.05 (0.00–0.20) 0.06 (0.00–0.27)

Other infectious causes 0.07 (0.00–0.25) 0.08 (0.00–0.32) 0.11 (0.04– 0.35)

Pneumonia – 0.20 (0.03–0.30) –

Pneumonia/diarrhea 0.46 (0.24–0.62) 0.26 (0.04–0.40) 0.37 (0.13–0.51)

Unspecified 0.47 (0.50-0.95) 0.11 (0.00-0.51) 0.14 (0.00-0.63)

Child – High mortality with malaria:

AIDS – 0.01 (0.00–0.10) 0.02 (0.00–0.13)

Diarrhea/dysentery – 0.03 (0.00–0.08) –

Injury 0.01 (0.00–0.01) 0.01 (0.00–0.01) 0.01 (0.00–0.01)

Malaria – 0.09 (0.00–0.23) 0.15 (0.01–0.30)

Measles 0.01 (0.00–0.08) 0.01 (0.00–0.08) 0.01 (0.00–0.08)

Meningitis/encephalitis – 0.08 (0.05–0.10) 0.02 (0.00–0.05)

Other infectious causes 0.03 (0.00–0.11) 0.09 (0.05–0.15) 0.12 (0.09–0.17)

Pneumonia – 0.12 (0.06–0.23) –

Pneumonia/diarrhea 0.35 (0.25–0.45) 0.14 (0.05–0.26) 0.24 (0.15–0.36)

Unspecified 0.45 (0.26–0.62) 0.06 (0.02–0.29) 0.10 (0.06–0.34)

Child – High mortality without malaria:

AIDS – 0.02 (0.00–0.30) 0.01 (0.00–0.37)

Diarrhea/dysentery – 0.02 (0.00–0.09) –

Injury 0.01 (0.00–0.02) 0.01 (0.00–0.02) 0.01 (0.00–0.02)

Malaria – – –

Measles 0.02 (0.00–0.08) 0.02 (0.00–0.08) 0.02 (0.00–0.08)

Meningitis/encephalitis – 0.06 (0.02–0.08) 0.14 (0.07–0.20)

Other infectious causes 0.03 (0.00–0.11) 0.09 (0.05–0.15) 0.12 (0.09–0.17)

Pneumonia – 0.10 (0.06–0.16) –

Pneumonia/diarrhea 0.22 (0.17–0.36) 0.09 (0.04–0.22) 0.19 (0.14–0.34)

Unspecified 0.26 (0.17–0.39) 0.10 (0.04–0.23) 0.16 (0.08–0.26)

*Median and range across one thousand simulations. Results are shown for three hierarchies, as a proportion of all child deaths.

malaria. The relative accuracy of the hierarchies by cause 

was similar to their performance in the general mortality 

scenario, except that in the high mortality with malaria sce-

nario the Liu hierarchy did best for meningitis/encephalitis 

and the Kalter hierarchy worked best for malaria. The me-

dian absolute difference for pneumonia and diarrhea in the 

scenario for high mortality with malaria was 0.35, 0.14, 

and 0.24 for the Arifeen, Kalter, and Liu hierarchies respec-

tively. These same median absolute differences in the high 

mortality scenario without malaria were 0.22, 0.09, and 

0.19, indicating an improvement in estimated CSMF for 

pneumonia and diarrhea when the CSMF for deaths due 

to malaria was low. In addition, the median difference in 

the pneumonia CSMFs in the Kalter hierarchy was 0.12 in 

the high mortality scenario with malaria, and 0.10 in the 

high mortality scenario without malaria. These results re-

flect improved estimates for pneumonia, as expected given 

that high malaria burden may complicate other diagnoses, 
especially for pneumonia [31].

The software for the best performing neonatal and child 
algorithms and hierarchies, along with the PHMRC ques-
tionnaire needed to collect the input data, are available on-
line [20].

DISCUSSION

We have compared six expert algorithm hierarchies for as-
signing causes of neonatal death and three for assigning 
causes of child death, and we compared the resulting cause 
distributions with reference standard causes. We made 
these comparisons among the PHMRC study data, resam-
pled to resemble the cause proportions of deaths from a 
variety of community settings as determined by the Child 
Health Epidemiology Reference Group on behalf of WHO. 
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There was minimal to fair agreement between the algo-
rithmic and the reference standard diagnoses at the indi-
vidual level, both for neonatal and child causes of death, 
although some hierarchies had slightly higher agreement 
than others.

Verbal autopsies are generally used to describe populations 
instead of individuals, and so we have focused on measures 
of the agreement between algorithm–assigned and refer-
ence standard causes at the population level [32]. By this 
measure the agreement between assigned and reference 
standard causes was more favorable and the algorithms ap-
pear useful. When assessed in this manner, the Baqui, Lawn 
and compromise hierarchies performed best for neonatal 
causes, and the Kalter hierarchy performed best for chil-
dren. The nearly equal performance of several hierarchies 
for neonatal deaths in the general mortality scenario sug-
gests that several of the VA studies used as input data for 
the WHO/CHERG modeled estimates, whose cause distri-
butions were the basis for the other mortality scenarios, 
may have used hierarchies with preterm placed higher up 
to select among multiple causes, similar to the ordering of 
diagnoses in the Baqui and Lawn hierarchies.

Hierarchy performance also varied across particular causes 
of neonatal and child death. For neonatal deaths, the Baqui 
and Lawn hierarchies performed best for birth asphyxia, 
and the compromise hierarchy performed best for prema-
turity. The Baqui hierarchy also performed best for sepsis/
pneumonia, while the Lawn and compromise hierarchies 
performed best for sepsis/pneumonia/meningitis. For 
deaths in children 1–59 months, there was a striking dif-
ference in hierarchy performance for pneumonia, for which 
the Kalter hierarchy performed best. Clearly some causes 
are more difficult to classify than others. Hierarchy–esti-
mated CSMF for child deaths due to injury was very close 
to the reference CSMF across all simulated scenarios. The 
estimated CSMF for measles, however, was near zero for all 
simulations, indicating a poor diagnostic ability, contrary 
to expectations for identifying measles [33]. This was like-
ly due to an aberration in the PHMRC VA interview data, 
which identified ‘rash’ in only 3/23 reference standard mea-
sles cases [18].

Poor performance for particular causes may be masked by 
good overall performance as indicated by CSMF accuracy. 
For example, when an algorithm estimates 52%, 29%, 2% 
and 4% for neonatal deaths due to sepsis/pneumonia, birth 
asphyxia, congenital malformation, and prematurity, where 
the actual CSMFs are 32%, 31%, 11%, and 11%, the CSMF 
accuracy is 0.79, indicating good overall performance al-
though sepsis/pneumonia is overestimated by 20%. Poor 
performance was observed for several causes in both neo-
nates and children, where estimated CSMF was relatively 
flat over a range of reference standard CSMF. The CSMF 

accuracy as a statistic is limited in its ability to describe 
these details.

Until very recently the verbal autopsy standard was for 
questionnaires to be examined individually with cause of 
death determination by physician review. The new stan-
dard is to encourage assignment of cause of death using 
automated computer programs for the InterVA–4 and Tar-
iff 2.0 methods [14]. The Tariff has been shown to outper-
form InterVA–4 in population level metrics, although re-
ports vary [11,15]. The Tariff method determines cause 
based on the relative associations of symptoms and causes 
of death in a reference standard “training” data set, supple-
mented with global burden of disease estimates for ques-
tionnaires with undetermined cause of death [12].

In a validation study with the PHMRC data, CSMF accu-
racy of the Tariff 2.0 was reported at 0.81 (uncertainty 
0.80, 0.82) for neonatal causes and 0.74 (uncertainty 0.74, 
0.75) for child causes [12]. This is within the observed 
range of the best performing expert algorithm hierarchies 
(at 0.80 with range 0.57 to 0.96 for neonatal deaths and 
0.76 with range 0.50 to 0.97 for child deaths), but with 
smaller uncertainty. The comparison, however, is not con-
clusive. Although the CSMF accuracy both of the expert 
algorithms and the Tariff were determined in the PHMRC 
data, only the Tariff was built on data from PHMRC study, 
potentially providing it with an advantage. In addition, the 
methods for resampling and estimating uncertainty were 
not the same, and so the reference is not necessarily on the 
same basis. In addition, the specified causes were not the 
same. For example, in the assessment of Tariff performance 
with neonatal causes of death, all deaths with co–morbid 
prematurity, birth asphyxia and/or sepsis were classified for 
resampling as being due to prematurity. The Tariff valida-
tion included six causes for neonatal deaths, and 21 for 
children, which is more total causes than in our expert al-
gorithm validation. A definitive comparison of the Tariff 
and expert algorithm methods is further complicated by 
computational requirements of the Tariff. A single selection 
of deaths can be used to validate the expert algorithms, but 
in addition to these, the Tariff requires a selection of refer-
ence deaths for training. This comparison is outside the 
scope of this paper, but an area for further research.

The expert algorithms are fully deterministic: verbal autop-
sies with the same responses will be assigned the same 
cause of death. Algorithms are based on symptom patterns 
that physicians and medical experts expect to correspond 
to common causes of death in neonates and children. This 
determinism is an asset for facilitating use and understand-
ing. While InterVA is also deterministic, it relies on condi-
tional probabilities of the relationships between symptoms 
and causes of death that operate unseen in the background, 
rendering it less easily explainable to non–medical profes-
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