© 2021 The Author(s) JoGH © 2021 ISGH **Cite as:** Zou M, Guo D, Chen A, Young CA, Li Y, Zheng D, Jin G. Prevalence of visual impairment among older Chinese population: A systematic review and meta-analysis. J Glob Health 2021;11:08004.

iournal of

Prevalence of visual impairment among older Chinese population: A systematic review and meta-analysis

<u>()</u>

Minjie Zou¹*, Dongwei Guo¹*, Aiming Chen²*, Charlotte Aimee Young³, Yi Li⁴, Danying Zheng¹, Guangming Jin¹

State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
²The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
³Department of Ophthalmology, Third Affiliated Hospital, Nanchang University, Nanchang, Jiangxi Province, China
⁴Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Hongkong, China
*Joint first authors.

Correspondence to:

Guangming Jin State Key Laboratory of Ophthalmology Zhongshan Ophthalmic Center Sun Yat-sen University Guangzhou China, 510060 jingm@mail2.sysu.edu.cn

Danying Zheng State Key Laboratory of Ophthalmology Zhongshan Ophthalmic Center Sun Yat-sen University Guangzhou China, 510060 zhengdyy@163.com **Background** To evaluate the prevalence of visual impairment (VI) among elderly Chinese population.

Methods All population-based studies on VI prevalence among elderly Chinese populations were searched and only studies with clear definitions of diagnosis were selected. Meta-analysis methods were used to estimate the pooled prevalence and its 95% confidence interval (95%CI) of moderate and severe visual impairment (MSVI) and blindness both by presenting visual acuity (PVA) and best corrected visual acuity (BCVA). Subgroup analysis of gender, district, geographical location, age, education level and examined year were also conducted.

Results 72 studies with 465039 individuals were included and analyzed. Using PVA, the pooled prevalence of MSVI is 10.9% (95% CI=9.4%-12.6%) and blindness is 2.2% (95% CI=1.8%-2.8%), while prevalence of MSVI and blindness by BCVA was 5.4% (95% CI=4.6%-6.2%) and 2.2% (95% CI=1.9%-2.5%), respectively. Females, rural residents, older age and lower educational level were risk factors for MSVI and blindness.

Conclusions VI causes a great health burden among Chinese populations, particularly affecting female subjects, subjects dwelling in rural area, older subjects and subjects with lower educational level.

China, with the largest and fastest aging population in the world, faces a significant challenge in managing age-related eye diseases which can ultimately cause visual impairment (VI) [1-4]. According to the Global Burden of Disease Study 2017, the Disease Adjusted Life Years (DALYs) of VI among Chinese populations has an upward trend, rising from 31.52 (95% CI=20.55, 47.29) billion in 1990 to 55.12 (95% CI=36.47, 82.49) billion in 2017, which contributes greatly to the disease burden worldwide [5]. Moreover, the increased life expectancy and the population increase indicates that the prevalence of VI is yet to rise, which would result in heavy economic burden to societies and individuals [6-8].

As a contributing member of the global movement Visual 2020, China has been taking significant strides toward reducing the prevalence of VI [9]. Plenty of past epidemiologic studies have reported on VI prevalence [9,10], and there have been several meta-analyses evaluating the VI prevalence among Chinese population in the past decades [2,11,12]. However, in recent years, many new stud-

Therefore, we performed this systematic review and meta-analysis to evaluate the magnitude of VI among older Chinese populations (individuals above 50 years old). Time trends and pooled prevalence of VI together with subgroup analyses by demographic characteristics in older Chinese populations will be investigated in this meta-analysis. We aim to produce results that will provide useful information for appropriate preventive strategies to reduce the disease burden caused by VI in China and beyond.

METHODS

Literature search strategy

This meta-analysis was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement. Publications reporting prevalence of VI among Chinese populations were reviewed and assessed. Two investigators (ZMJ and GDW) searched for literature independently in both English (Embase, PubMed and Web of science) and Chinese (SinoMed, VIP and Chinese National Knowledge Infrastructure) databases from January 1, 1999 until June 16, 2020. The search terms were as follows:

- (("Vision Disorders" [Mesh]) OR "Blindness" [Mesh]) OR ("Vision, Low" [Mesh]) OR ("Visually Impaired Persons" [Mesh]) OR blindness OR visual impairment OR low vision OR visual loss OR visually impaired OR visual disability
- 2. ("Prevalence" [Mesh]) OR ("Epidemiology" [Mesh]) OR (prevalence OR Epidemiology OR incidence)
- 3. "China" [Mesh] or China or Chinese
- 4. Combine 1 AND 2 AND 3

Study selection

Studies were included if they met the following criteria: 1) population-based study; 2) utilized recognized definitions and standardized grading method to diagnose and classify VI; 3) accessible full text in Chinese or English; 4) explicit survey year; 5) age-specific prevalence data. Population-based studies are those which have a clear sampling frame of the community. The most common definition of VI is as follows: normal vision, visual acuity better than 6/12; moderate and severe visual impairment (MSVI), visual acuity better than 3/60 but worse than 6/18; and blindness, visual acuity worse than 3/60. One sub-lesion of VI, severe visual impairment (SVI), is defined as 3/60 to 6/60. Low vision is defined as having blindness or VI [13]. The prevalence by presenting visual acuity (PVA) and best corrected visual acuity (BCVA) were pooled separately.

Titles and abstracts of all initial searched results were screened independently by two investigators (ZMJ and GDW). If there was more than one publication based on the same study, the study with more thorough information was selected.

Data extraction and quality assessment

Two investigators (ZMJ and GDW) conducted the data extraction independently and any disagreements were resolved by a discussion with a third investigator (JGM). The following information was extracted and tabulated: first author, study setting, sampling method, survey time, sample size, basic demographic data, the prevalence of MSVI, SVI, VI and SVI if available. For the multicenter surveys, we used the pooled prevalence provided by the original study. If the studies did not provide pooled prevalence, the prevalence data of the single location in the study was used.

The quality of all selected articles was evaluated by two investigators (ZMJ and GDW) with a commonly used 8-item assessment tool [14,15] According to the quality evaluation tool, each study was given a score of 0-8. We consider a score of 7-8 as high quality, 4-6 as moderate quality, and 0-3 as low quality. The coding of assessment has been described previously.

Statistical analysis

The meta-analysis was conducted using the Comprehensive Meta-Analysis software, Version 2 (Biostat Inc., Englewood, New Jersey, USA). The prevalence of MSVI, SVI (if applicable), VI and blindness with 95% confidence intervals (CI) were calculated using random-effects models if considered of high heterogeneity, otherwise

the fixed-effects model was applied. Heterogeneity between studies was assessed by I² statistic, with I²>50% regarded as high heterogeneity. Age-specific pooled prevalence of MSVI and blindness by 50-59, 60-69, 70-79, 80 and above years old age groups was conducted. To explore the possible sources of heterogeneity associated with gender, district (rural/urban), geographical location (central/eastern/western China), education level (illiterate/primary school and lower/middle school and above) and survey year (1999-2009/2010-2017), subgroup analyses were performed using Q-tests separately. Continuous variables were dichotomized using median splitting method in subgroup analyses. Publication bias was assessed by the Funnel plots, Begg's tests and Egger's tests. Significance level was set at P < 0.05(two-tailed) [16].

RESULTS

Selection and inclusion of the studies

72 studies with 465039 individuals out of 14676 initial records were identified according to the inclusion criteria for analysis (Figure 1). There were 90 data sets in total as four studies conducted multi-center surveys with different samples [9,10,17,18]. Basic characteristics of the included studies are given in Table 1. Of these 72 studies, 20 were written in English [9,10,17,19,20,25,27-32,55,56,67-69,75,83,84] and the rest were in Chinese [18,21-24,26,33-54,57-66,70-74,76-83,85-95]. The target population of all selected studies was clearly defined, and all the samples were representative of the general population. 38 studies used BCVA [18,28-64], 9 studies used PVA [19-27] and the rest used both BCVA and PVA [9,10,17,65-95] in the diagnoses of blindness and MSVI. The data of several subgroup analyses (gender, district, geographical location, age, education and examined year) were not available in some included studies; the sum of the individuals may not agree with the total number given by 72 studies.

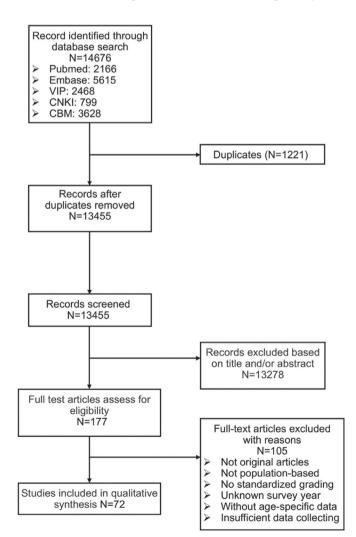


Figure 1. Flowchart of the study selection process.

Quality assessment and publication bias

The 8-item assessment tool was used to evaluate the quality of the included studies, ranging from 4 to 8, with an average assessment score of 6.2. 7 studies were given the highest score [10,38,55,68,74,75,86], and 23 studies were classified as high quality, while the rest were considered moderate quality. The most common problem of the included studies in the meta-analysis was unclear description of non-responders.

After removing each study sequentially for sensitivity analysis, the pooled prevalence of remaining studies did not change significantly compared to the initial results. According to the results of the Begg's test (MSVI: Z = 1.524, P = 0.127; blindness: Z = 1.676, P = 0.094), Egger's tests (MSVI: *t*=0.547, *P*=0.588; blindness: *t*=0.648, *P*=0.521) and funnel plot (Figure S1 in the Online Supplementary Document, Panels A and B), we concluded that there was no publication bias in both the prevalence of blindness and MSVI by PVA. Concerning the prevalence of blindness and MSVI by BCVA, although the Begg's tests indicated potential bias may exist (MSVI: Z=2.940, P=0.003; blindness: Z = 2.525, P = 0.012), the Egger's tests (MSVI: t = 0.878, P = 0.383; blindness: t = 1.305, P = 0.197) and funnel plot (Figure S1 in the Online Supplementary Document, Panels C and D) did not suggest any publication bias.

Prevalence of blindness and VI among Chinese population by using PVA

The pooled prevalence using PVA is given by **Table 2** and Figure S1 in the **Online Supplementary Document** (Panels E and F), with 250 080 individuals in total. MSVI prevalence reported in original studies varied from 1.8% to

Zou et al.

Table 1. Characteristics of included studies

FIRST AUTHOR	Province	DISTRICT	REGION	LANGUAGE	SURVEY YEAR	AGE RANGE	z	MEASURE OF VISUAL ACUITY	RESPONSE RATE (%)	DEFINITION OF OLDER ADULTS	NO. OF OLDER ADULTS	ASSESSMENT*
Emmy Y. Li [19]	Hainan	ш	R	EANG	2010	≥50	6482	PVA	95.3	≥50	6482	9
CW Pan [20]	Jiangsu	ш	R	ENG	2013-2014	≥60	4579	PVA	82.1	≥60	4579	9
JF Chen [21]	Shanghai	Е	R&U	CHN	NA	≥50	5090	PVA	87.8	≥50	5090	5
H Hu [22]	Yunnan	Μ	Я	CHN	2014	≥50	5592	PVA	93.2	≥50	5592	7
XJ Zhang [23]	Tianjin	ш	Я	CHN	2001	≥40	1776	PVA	89.4	>50	1026	Ĵ.
S Liu [24]	Chongqing	Μ	D	CHN	2005	≥50	5079	PVA	89.4	≥50	5079	9
L Li [25]	Jiangsu	ш	n	ENG	2003	≥60	3040	PVA	90.7	≥60	3040	9
S Wu [26]	Zhejiang	ш	R&U	CHN	2012-2013	≥60	3428	PVA	0.06	≥60	3428	9
ZJ Li [27]	Heilongjiang	ш	R	ENG	2006-2007	≥50	5057	PVA	91.0	≥50	5057	9
Nancy Chen [28]	Taiwan	ш	Я	ENG		≥65	2316	BCVA	61.2	≥65	2316	9
T Li [29]	Shanxi	C	R&U	ENG	2006	0-80	75016	BCVA	85.5	≥50	17473	9
Y Yao [30]	Jiangsu	ш	n	ENG	2010	≥50	6155	BCVA	91.5	≥50	6155	9
GS Zhang [31]	Inner Mongolia	C	R&U	ENG	2013	≥40	5770	BCVA	80.1	>50	4928	7
YG Zhang [32]	Heilongjiang	U	Ч	ENG	2008-2009	All	10384	BCVA	88.1	>50	2728	7
GP Duan [33]	Hunan	С	R	CHN	2008-2009	≥50	4857	BCVA	92.3	>50	4857	9
GP Duan [34]	Hunan	C	Я	CHN	2008-2009	≥50	4402	BCVA	88.8	≥50	4402	7
J Fu [35]	Xinjiang	M	R&U	CHN	2009-2010	≥40	8295	BCVA	83.8	≥50	5235	9
YH Gu [18]	Anhui	0	D	CHN	2008	All	3336	BCVA	91.4	- >50	987	L -
			R				3602		92.1		1386	
XY Huang [36]	Guangdong	ш	R	CHN	2012	≥50	4329	BCVA	93.7	≥50	4329	9
Y Huang [37]	Shanghai	ш	R	CHN	2016-2017	≥60	4260	BCVA	70.8	≥60	4260	9
JP Liu [38]	Yunnan	M	R	CHN	2008	All	2460	BCVA	80.1	≥50	705	8
XP Liu [39]	Guangdong	Е	R&U	CHN	2014-2015	≥50	4539	BCVA	NA	≥50	4539	5
XY Ma [40]	Shanghai	ш	Ŋ	CHN	2009	≥65	2299	BCVA	92.0	≥65	2299	9
M NA Bijiang [41]	Xinjiang	M	Ŋ	CHN	2010	≥40	4104	BCVA	81.6	≥50	2853	9
M Yusup [42]	Xinjiang	Μ	R	CHN	2009	≥40	4191	BCVA	86.0	≥50	2382	7
YJ Meng [43]	Tianjin	Е	R&U	CHN	2014	≥60	5520	BCVA	94.0	≥60	5520	9
JZ Pei [44]	Shaanxi	M	R	CHN	2010-2012	All	4394	BCVA	85.0	≥50	1912	7
H Qi [45]	Shanghai	Е	N	CHN	2009	≥60	4785	BCVA	91.3	≥60	4785	9
LF Qiao [46]	Sichuan	Μ	R	CHN	2011	≥50	2817	BCVA	98.8	≥50	2817	9
FR Shen [47]	Shanxi	С	R	CHN	NA	≥50	6469	BCVA	96.7	≥50	6769	9
B Shen [48]	Shanghai	н	Ŋ	CHN	2010	≥60	6302	BCVA	91.8	≥60	6302	9
W Sun [49]	Jiangsu	ш	N	CHN	2010	≥50	6150	BCVA	91.5	≥50	6150	9
GM Wang [50]	Shandong	ш	R	CHN	2008	≥50	4916	BCVA	98.2	≥50	4916	9
XL Wu [51]	Zhejiang	ш	Ŋ	CHN	2015-2016	≥50	5448	BCVA	89.9	≥50	5448	9
LJ Tang [52]	Chongqing	M	Ŋ	CHN	2009-2011	≥55	2600	BCVA	NA	≥55	2600	9
SS Zhang [53]	Jiangsu	ш	Ŋ	CHN	2013	≥60	5564	BCVA	94.9	≥60	5564	9
171 [24]			F	UTINI C		111	2010	V L L	0			

FIRST AUTHOR	Province	DISTRICT	REGION	LANGUAGE	SURVEY YEAR	AGE RANGE	z	MEASURE OF VISUAL ACUITY	RESPONSE RATE (%)	DEFINITION OF OLDER ADULTS	NO. OF OLDER ADULTS	Assessment*
XJ Zhang [55]	Guangdong	Е	R&U	ENG	2012	≥50	3484	BCVA	94.2	≥50	3484	8
L Xu [56]	Beijing	Ц	R&U	ENG	2001	≥40	4439	BCVA	83.4	>50	2987	7
L Chen [57]	Shaanxi	M	R	CHN	2003	≥50	1765	BCVA	80.2	≥50	1765	9
CX Qi [58]	Guangdong	ш	Ŋ	CHN	2007	≥50	4126	BCVA	91.0	≥50	4126	9
LL Yang [59]	Guangdong	ш	Ŋ	CHN	2008	≥60	11210	BCVA	88.2	≥60	11210	9
M Wei [60]	Sichuan	M	R&U	CHN	2006	ALL	125641	BCVA	NA	≥50	41441	5
XF Gao [61]	Heilongjiang	ш	n	CHN	1999	≥60	7499	BCVA	92.0	≥60	7499	9
X Zhao [62]	Beijing	ш	Ŋ	CHN	2006	≥50	2410	BCVA	85.1	≥50	2410	5
TY Xie [63]	Xinjiang	M	R	CHN	2005	≥40	2955	BCVA	80.0	≥50	1929	9
TZ Zhang [64]	Xinjiang	M	R	CHN	2001	≥45	1208	BCVA	91.3	≥55	736	5
J Zhou [65]	Jiangsu	ш	R	CHN	2008	≥60	1305	PVA&BCVA	93.8	≥60	1305	7
XW Tong [66]	Shanghai	ш	n	CHN	2009	≥60	4545	PVA&BCVA	87.4	≥60	4545	9
YT Tang [67]	Zhejiang	ш	R&U	ENG	2012-2013	≥45	10234	PVA&BCVA	78.1	≥50	8317	7
J Li [68]	Yunnan	M	R	ENG	2010	≥50	2133	PVA&BCVA	77.8	≥50	2133	8
XF Li [69]	Hebei	ш	R	ENG	2010	>7	20298	PVA&BCVA	82.7	≥50	4012	7
M Yang [70]	Jiangsu	ш	R	CHN	2010-2011	≥50	5947	PVA&BCVA	96.8	≥50	5947	7
MC Yi [71]	Sichuan	W	Ŋ	CHN	2013	≥50	3086	PVA&BCVA	93.7	≥50	3086	7
JY Hu [72]	Jiangsu	Ц	R	CHN	2006	≥50	653	PVA&BCVA	92.0	≥50	653	9
W Zhou [73]	Shanghai	Е	R & U	CHN	2015	≥50	3497	PVA&BCVA	86.3	>50	3497	5
LH Wang [74]	Shandong	ш	R	CHN	2008	≥50	17816	PVA&BCVA	91.0	≥50	17816	8
SS Huang [75]	Guangdong	Е	U	ENG	2003	≥50	1399	PVA&BCVA	75.3	≥50	1399	8
BJ Hou [76]	Tibet	M	R	CHN	2000	≥40	3071	PVA&BCVA	97.4	≥50	2060	9
JL Zhao [9]	Multicenter	NA	R	ENG	2014	≥50	51310	PVA&BCVA	90.6	>50	51310	7
ן 11 [1] [1]	lian acu	Ļ	R	ENG	0106	0 2 2	5947	- DV/A K+RCV/A	96.8	- 054	5947	7
	negimil	L	U	Ē	0107	2003	6106		90.8	003	6106	-
W Wang [77]	Shanghai	ш	R	CHN	2008-2009	≥60	2150	PVA&BCVA	81.0	≥60	2150	9
CJ Liu [78]	Shanghai	Е	U	CHN	2012	≥70	15238	PVA&BCVA	NA	≥70	15238	4
LL Deng [79]	Jiangxi	C	R	CHN	2015	≥50	5119	PVA&BCVA	94.1	≥50	5119	9
JH Zhou [80]	Yunnan	W	R	CHN	2011-2012	≥50	5151	PVA&BCVA	92.4	≥50	5151	5
M Wu [81]	Yunnan	W	R	CHN	2008	≥50	2842	PVA&BCVA	94.7	≥50	2842	5
JL Zhao [10]	Multicenter	NA	R	ENG	2006	≥50	47547	PVA&BCVA	91.5	≥50	47547	8
M Wu [82]	Yunnan	W	R&U	CHN	2006	≥50	2588	PVA&BCVA	93.8	≥50	2588	5
XB Huang [83]	Shanghai	Е	U	CHN	2007-2008	≥60	3851	PVA&BCVA	92.7	≥60	3851	9
WL Song [84]	Heilongjiang	ш	R	ENG	2007	≥40	4956	PVA&BCVA	86.0	≥50	3525	9
XJ Xiong [85]	Chongqing	W	R	CHN	NA	≥50	2122	PVA&BCVA	83.0	≥50	2122	7
YB Liang [86]	Hebei	Ш	R	ENG	2006-2007	≥30	6830	PVA&BCVA	90.4	≥50	4241	8

Finer	NO. OF OLDER		PRESENTING	VISUAL ACUITY	
FIRST AUTHOR	ADULTS	MSVI	SVI	VI	Blindness
Emmy Y. Li [19]	6482	11.8 (11.0-12.6)	1.9 (1.6-2.2)	16.2 (15.3-17.1)	4.4 (3.9-4.9)
CW Pan [20]	4579	6.3 (5.6-7.0)	-	6.8 (6.1-7.5)	0.5 (0.3-0.8)
JF Chen [21]	5090	3.4 (2.9-3.9)	_	3.7 (3.2-4.2)	0.3 (0.2-0.5)
H Hu [22]	5592	14.7 (13.8-15.7)	1.6 (1.3-1.9)	20.1 (19.0-21.1)	5.4 (4.8-6.0)
XJ Zhang [23]	1026	_	_	_	2.0 (1.3-3.0)
S Liu [24]	5079	7.6 (6.9-8.4)	_	12.9 (12.0-13.9)	5.3 (4.8-6.0)
L Li [25]	3040	1.8 (1.4-2.4)	_	3.2 (2.63.9)	1.4 (1.0-1.8)
S Wu [26]	3428	7.9 (7.1-8.9)	2.6 (2.1-3.2)	10.6 (9.6-11.7)	2.7 (2.2-3.3)
ZJ Li [27]	5057	8.3 (7.6-9.1)	_	10.2 (9.4-11.1)	1.9 (1.6-2.3)
J Zhou [65]	1305	18.6 (16.6-20.8)	_	25.8 (23.4-28.2)	7.1 (5.9-8.7)
XW Tong [66]	4545	8.8 (8.2-9.4)	_	9.7 (8.9-10.6)	0.9 (0.6-1.2)
YT Tang [67]	8317	8.8 (8.2-9.4)	_	10.0 (9.3-10.6)	1.2 (1.0-1.5)
J Li [68]	2133	15.2 (13.8-16.8)	_	18.8 (17.2-20.5)	3.6 (2.9-4.5)
XF Li [69]	4012	9.5 (8.6-10.4)	_	10.9 (10.0-11.9)	1.2 (0.9-1.6)
JL Zhao (2014) [9]	51310	10.3 (10.0-10.6)	_	12.0 (11.7-12.2)	1.7 (1.6-1.8)
RR Zhu [17] -	5947	23.6 (22.6-24.7)	2.0 (1.7-2.4)	26.0 (24.9-27.1)	2.3 (2.0-2.7)
KK ZIIU [17]	6106	5.4 (4.8-6.0)	0.5 (0.3-0.7)	6.3 (5.7-6.9)	0.9 (0.7-1.2)
M Yang [70]	5947	23.6 (22.6-24.7)	2.0 (1.7-2.4)	25.9 (24.8-27.1)	2.3 (2.0-2.7)
MC Yi [71]	3086	12.5 (11.3-13.7)	2.3 (1.8-2.9)	15.3 (14.1-16.6)	2.9 (2.3-3.5)
JY Hu [72]	653	16.5 (13.9-19.6)	-	22.5 (19.5-25.9)	6.0 (4.4-8.1)
W Zhou [73]	3497	14.8 (13.6-16.0)	-	15.9 (14.7-17.1)	1.1 (0.8-1.5)
LH Wang [74]	17816	7.0 (6.6-7.4)	-	8.6 (8.2-9.0)	1.6 (1.4-1.8)
W Wang [77]	2150	21.7 (20.0-23.5)	-	23.7 (22.0-25.6)	2.0 (1.5-2.7)
CJ Liu [78]	15238	14.5 (14.0-15.1)	1.0 (0.7-1.2)	16.2 (15.6-16.8)	1.7 (1.5-1.9)
LL Deng [79]	5119	17.0 (16.0-18.1)	-	19.2 (18.1-20.3)	2.2 (1.8-2.6)
JH Zhou [80]	5151	14.1 (13.2-15.1)	-	17.8 (16.8-18.9)	3.7 (3.2-4.3)
M Wu [81]	2842	-	-	-	2.0 (1.6-2.6)
JL Zhao (2006) [10]	45747	10.8 (10.5-11.1)	-	13.1 (12.8-13.4)	2.3 (2.2-2.4)
SS Huang [75]	1399	10.1 (8.6-11.8)	0.6 (0.3-1.2)	10.7 (9.2-12.4)	0.6 (0.3-1.2)
BJ Hou [76]	2060	7.9 (6.8-9.2)	-	18.5 (16.9-20.3)	10.6 (9.4-12.0)
M Wu [81]	2588		_		3.7 (3.0-4.5)
XB Huang [83]	3851	26.8 (25.4-28.2)	-	33.9 (32.4-35.4)	7.2 (6.4-8.0)
WL Song [84]	3525	9.8 (8.9-10.8)	-	12.3 (11.3-13.5)	2.6 (2.1-3.2)
XJ Xiong [85]	2122	11.2 (9.9-12.6)	0.9 (0.5-1.3)	15.2 (13.7-16.8)	4.0 (3.3-4.9)
YB Liang [86]	4241	8.5 (7.7-9.4)	-	10.0 (9.1-10.9)	1.5 (1.2-1.9)
Pooled prevalence	250080	10.9 (9.4-12.6)	2.7(1.9-3.8)	13.6 (11.8-15.6)	2.2 (1.8-2.8)

MSVI - moderate and severe visual impairment, SVI - severe visual impairment, VI - visual impairment

43.7%[9,25], while blindness was 0.3% to 10.6%[21,76]. The pooled prevalence of MSVI was 10.9% (95% CI=9.4%-12.6%) and blindness was 2.2% (95% CI=1.8%-2.8%). As for SVI and VI, the pooled rate was 2.7% (95% CI=1.9%-3.8%) and 13.6% (95% CI=11.8%-15.6%).

Prevalence of MSVI and blindness among Chinese population by using BCVA

Table 3 and Figure S1 in the **Online Supplementary Document** (Panels G and H) shows the reported prevalence of MSVI ranged from 1.3% to 32.0% in terms of BCVA [47,96], and for blindness from 0.4% to 8.7% [56,76]. The pooled prevalence of MSVI and blindness was 5.4% (95% CI=4.6%-6.2%) and 2.2% (95% CI=1.9%-2.5%), respectively. Meanwhile, the pooled prevalence of SVI was 1.4% (95% CI=1.0%-1.9%) and VI prevalence was 7.8% (95% CI=6.9%-8.9%).

Subgroup analyses of the pooled prevalence of VI and blindness

Table 4 shows the subgroup analyses of MSVI and blindness among Chinese population by PVA and BCVA.

For MSVI, subgroup analyses using PVA for diagnosis presented similar results with that of BCVA. Gender difference is of statistical significance, as the prevalence of females (15.6%, 95% CI=12.7%-18.9% for PVA; 7.1%, 95% CI=5.9%-8.4% for BCVA) surpassed those of male (12.3%, 95% CI=10.0%-15.2% for PVA; 5.6%,

Table 3. Pooled prevalence of visual impairment by best corrected visual acuity

	NO. OF OLDER		Best corre	CTED VISUAL ACUITY	
FIRST AUTHOR	ADULTS	MSVI	SVI	VI	Blindness
Nancy Chen [28]	2316	4.1 (3.3-4.9)	_	4.9 (4.1-5.8)	0.8 (0.5-1.3)
ſ Li [29]	17473	1.4 (1.2-1.6)	_	2.0 (1.8-2.2)	0.6 (0.5-0.8)
Yao [30]	6155	3.5 (3.1-4.0)	_	6.8 (6.1-7.4)	3.3 (2.9-3.7)
S Zhang [31]	4928	13.2 (12.3-14.2)	_	19.8 (18.7-20.9)	6.6 (5.9-7.3)
G Zhang [32]	2728	4.6 (3.9-5.5)	_	6.8 (5.9-7.8)	2.2 (1.7-2.8)
GP Duan [33]	4857	4.5 (4.0-5.2)	_	6.5 (5.8-7.2)	1.9 (1.6-2.3)
GP Duan [34]	4402	4.9 (4.3-5.6)	-	7.2 (6.5-8.0)	2.3 (1.9-2.7)
Fu [35]	5235	7.2 (6.5-8.0)	_	10.8 (10.0-11.7)	3.6 (3.1-4.1)
	987	2.5 (1.7-3.6)	_	7.8 (6.3-9.6)	5.3 (4.1-6.9)
7H Gu [18] –	1386	2.0 (1.4-2.9)	_	4.9 (3.9-6.2)	2.9 (2.1-3.9)
Y Huang [36]	4329	6.8 (6.1-7.6)	_	9.0 (8.2-9.9)	2.2 (1.8-2.7)
7 Huang [37]	4260	7.7 (7.0-8.6)	_	10.5 (9.6-11.5)	2.8 (2.3-3.3)
P Liu [38]	705	5.3 (3.8-7.2)	_	9.4 (7.4-11.7)	4.1 (2.9-5.9)
(P Liu [39]	4539	7.0 (6.3-7.7)	_	9.1 (8.3-10.0)	2.2 (1.8-2.6)
Y Ma [40]	2299	7.2 (6.2-8.4)		10.0 (8.8-11.3)	2.8 (2.2-3.5)
C C	2299		_		
A NA Bijiang [41]		4.7 (4.0-5.5)	_	6.8 (6.0-7.8)	2.1 (1.7-2.7)
Mehriban Yusup [42]	2382	9.0 (7.9-10.2)	-	14.8 (13.4-16.3)	5.8 (5.0-6.9)
[J Meng [43]	5520	5.3 (4.7-5.9)	_	10.1 (9.3-10.9)	4.8 (4.3-5.4)
Z Pei [44]	1912	8.1 (7.0-9.4)	-	9.6 (8.3-11.0)	1.5 (1.0-2.1)
H Qi [45]	4785	13.5 (12.6-14.5)	-	15.9 (14.9-16.9)	2.3 (1.9-2.8)
_F Qiao [46]	2817	15.1 (13.8-16.5)	2.5 (1.9-3.1)	19.1 (17.7-20.6)	3.9 (3.3-4.7)
R Shen [47]	6769	1.3 (1.1-1.6)	-	2.5 (2.1-2.9)	1.2 (0.9-1.5)
3 Shen [48]	6302	9.3 (8.6-10.0)	_	10.7 (10.0-11.5)	1.5 (1.2-1.8)
V Sun [49]	6150	3.5 (3.0-4.0)	-	6.8 (6.1-7.4)	3.3 (2.9-3.7)
GM Wang [50]	4916	5.3 (4.7-6.0)	-	7.7 (7.0-8.4)	2.4 (2.0-2.8)
KL Wu [51]	5448	3.3 (2.9-3.9)	_	4.3 (3.8-3.9)	1.0 (0.7-1.2)
J Tang [52]	2600	17.7 (16.3-19.2)	_	21.7 (20.2-23.4)	4.0 (3.3-4.9)
S Zhang [53]	5564	12.7 (11.9-13.6)	_	13.6 (12.7-14.5)	0.9 (0.7-1.2)
Zhang [54]	1284	_	_	_	5.1 (4.1-6.5)
XJ Zhang [55]	3484	8.0 (7.2-9.0)	1.1 (0.8-1.5)	10.5 (9.5-11.5)	2.4 (2.0-3.0)
Xu [56]	2987	1.5 (1.1-2.0)	_	1.9 (1.5-2.5)	0.4 (0.2-0.7)
_ Chen [57]	1765	3.5 (2.7-4.5)	_	6.2 (5.2-7.4)	2.7 (2.0-3.6)
CX Qi [58]	4126	8.4 (7.6-9.3)	_	14.4 (13.3-15.5)	6.0 (5.3-6.7)
LL Yang [59]	11210	8.3 (7.8-8.8)		12.7 (12.1-13.4)	4.5 (4.1-4.8)
M Wei [60]	41441	1.4 (1.3-1.5)	_	3.8 (3.6-4.0)	2.4 (2.2-2.5)
XF Gao [61]	7499	1.3 (1.1-1.6)		2.0 (1.7-2.4)	0.7 (0.5-0.9)
			-		
X Zhao [62]	2410	5.9 (5.1-6.9)	_	9.3 (8.2-10.6)	3.4 (2.7-4.2)
IY Xie [63]	2955	10.1 (8.8-11.5)	-	16.9 (15.2-18.6)	6.7 (5.7-7.9)
TZ Zhang [64]	1208	8.4 (6.6-10.7)	_	10.6 (8.6-13.0)	2.2 (1.3-3.5)
Zhou [65]	1305	9.4 (7.9-11.1)	-	13.4 (11.7-15.4)	4.1 (3.1-5.3)
KW Tong [66]	4545	3.2 (2.7-3.7)	-	3.9 (3.3-4.5)	0.7 (0.5-0.9)
/T Tang [67]	10234	5.9 (5.4-6.4)	-	7.0 (6.5-7.6)	1.1 (0.9-1.4)
Li [68]	2133	7.8 (6.7-9.0)	_	10.6 (9.4-12.0)	2.9 (2.2-3.7)
KF Li [69]	20298	5.7 (5.1-6.5)	-	6.6 (5.9-7.4)	0.9 (0.6-1.2)
L Zhao (2014) [9]	51310	4.5 (4.3-4.6)	_	5.9 (5.7-6.1)	1.4 (1.3-1.5)
2D 7hu [17]	5947	6.4 (5.8-7.1)	0.7 (0.6-1.0)	8.1 (7.4-8.8)	1.7 (1.4-2.0)
R Zhu [17] –	6106	2.4 (2.1-2.8)	0.2 (0.1-0.4)	3.2 (2.7-3.6)	0.8 (0.6-1.0)
A Yang [70]	5947	6.4 (5.8-7.1)	0.7 (0.6-1.0)	8.0 (7.3-8.7)	1.6 (1.3-1.9)
AC Yi [71]	3086	6.5 (5.7-7.4)	1.0 (0.7-1.4)	8.8 (7.9-9.9)	2.3 (1.8-2.9)
Y Hu [72]	653	4.3 (3.0-6.1)	_	7.5 (5.7-9.8)	3.2 (2.1-4.9)
V Zhou [73]	3497	4.0 (3.4-4.7)	_	4.9 (4.2-5.6)	0.7 (0.5-1.1)
H Wang [74]	17816	3.7 (3.4-4.7)	_	5.0 (4.7-5.3)	1.3 (1.2-1.5)
W Wang [77]	2150	8.2 (7.1-9.4)	_	9.8 (8.6-11.1)	1.6 (1.2-2.3)
	15238	3.5 (3.3-3.8)		5.0 (4.6-5.3)	1.4 (1.2-1.6)
71 L in [78]	1 1 4 10	J.J (J.J-J.O/	-	J.U (T.U-J.J)	1.7 (1.2-1.0)
		72(6570)		86(7004)	15(1210)
CJ Liu [78] LL Deng [79] JH Zhou [80]	5119	7.2 (6.5-7.9) 7.7 (7.0-8.5)	_	8.6 (7.9-9.4) 13.1 (12.2-14.0)	1.5 (1.2-1.8) 5.3 (4.8-6.0)

Table 3. Continued

	NO. OF OLDER		Best corre	CTED VISUAL ACUITY	
FIRST AUTHOR	ADULTS	MSVI	SVI	VI	Blindness
JL Zhao (2006) [10]	45747	5.3 (5.1-5.5)	_	7.23 (7.0-7.5)	1.9 (1.8-2.1)
SS Huang [75]	1399	3.1 (2.3-4.1)	0.1 (0-0.5)	3.6 (2.7-4.7)	0.5 (0.2-1.0)
BJ Hou [76]	3071	4.8 (4.0-5.8)	_	13.6 (12.1-15.1)	8.7 (7.6-10.0)
M Wu [82]	2588	-	_	-	3.2 (2.6-3.9)
XB Huang [83]	3851	14.6 (13.5-15.7)	-	17.1 (15.9-18.3)	2.5 (2.0-3.0)
WL Song [84]	4956	6.6 (5.9-7.5)	-	9.1 (8.1-10.0)	2.4 (2.4-2.0)
XJ Xiong [85]	2122	6.2 (5.2-7.3)	0.8 (0.5-1.2)	8.0 (6.9-9.2)	1.8 (1.3-2.5)
YB Liang [86]	6830	2.6 (2.2-3.1)	_	3.8 (3.3-4.4)	1.2 (0.9-1.6)
Pooled prevalence	438927	5.4 (4.6-6.2)	1.4 (1.0-1.9)	7.8 (6.9-8.9)	2.2 (1.9-2.5)

MSVI - moderate and severe visual impairment, SVI - severe visual impairment, VI - visual impairment

 Table 4. Subgroup analysis of blindness and visual impairment of Chinese population by presenting visual acuity and best corrected visual acuity

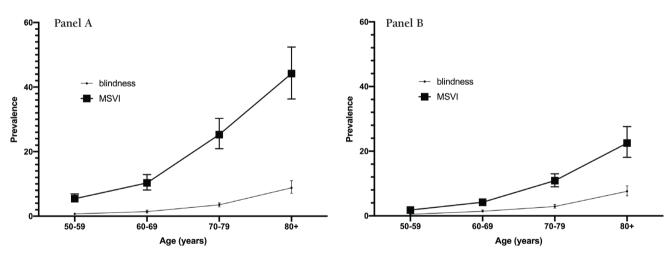

		MODERATE AND	SEVERE V <u>ISU</u>	AL IMPAIRME	NT	_		Blindness		
Subgroup	N	Prevalence and 95% CI (%)	Hetero- geneity, I ² (%)	Q-value	P-value	Ν	Prevalence and 95% CI (%)	Hetero- geneity, I ² (%)	Q-value	P-value
Present by present visual	l acuit	У								
Gender:										
Female	34	15.6 (12.7-18.9)	99.568	7639.915	<0.001	37	2.2 (1.9-2.7)	96.271	965.294	- <0.001
Male	34	12.3 (10.0-15.2)	99.378	5307.023	<0.001	37	1.7 (1.3-2.1)	96.596	1057.694	- <0.001
District:										
Rural	35	14.9 (12.0-18.4)	99.734	12760.453	<0.001	38	2.2 (1.8-2.7)	97.946	1801.707	- <0.001
Urban	6	9.0 (5.4-14.8)	99.584	1202.177	<0.001	7	2.2 (1.2-4.0)	98.923	557.320	< <0.001
Geographical location:										
Central China	3	19.7 (12.0-30.6)	99.535	430.343		3	1.7 (1.3-2.4)	85.850	14.134	
Eastern China	32	12.3 (9.4-15.9)	99.770	13482.959	< 0.001	33	1.6 (1.3-2.1)	97.447	1253.332	< 0.001
Western China	13	14.1 (10.6-18.3)	99.480	2308.491		15	3.3 (2.5-4.4)	97.901	666.884	
Age:										
50-59	36	5.4 (4.3-6.9)	98.914	3223.944		38	0.7 (0.5-0.9)	91.569	438.851	
60-69	43	10.3 (8.1-12.9)	99.318	6156.620	0.165	45	1.4 (1.0-1.9)	96.445	1237.792	-0.001
70-79	39	25.3 (20.9-30.3)	99.356	5902.461	0.165	41	3.5 (2.9-4.1)	94.389	712.873	- <0.001
80+	39	44.2 (36.3-52.4)	99.286	5319.924		41	8.8 (7.1-11.0)	96.407	1113.256	-
Educational level:										
Illiterate	16	19.1 (15.9-22.8)	98.598	1070.033		16	4.8 (3.6-6.4)	96.551	434.917	
Primary school and lower	20	9.7 (7.7-12.3)	98.364	1161.541	< 0.001	19	1.7 (1.1-2.5)	94.095	423.386	<0.001
Secondary school and above	25	6.9 (4.8-9.7)	97.691	1161.378		26	1.7 (1.1-2.7)	96.310	487.763	-
Examined year:										
1999-2009	27	9.9 (8.4-11.8)	99.027	2670.885	.0.001	30	2.4 (1.9-3.0)	97.858	1353.906	.0.001
2010-2017	24	16.2 (12.6-20.5)	99.763	9699.090	<0.001	24	1.6 (1.2-2.1)	97.647	977.293	- <0.001
Prevalence by best correct	cted vi	isual acuity								
Gender:										
Female	48	7.1 (5.9-8.4)	99.029	4840.553		49	1.9 (1.6-2.3)	97.391	1839.996	
Male	48	5.6 (4.7-6.8)	98.637	3447.731	<0.001	49	1.6 (1.3-1.9)	95.571	1083.737	- <0.001
District:										
Rural	53	6.2 (5.2-7.3)	99.199	6492.752	0.001	54	1.9 (1.6-2.3)	97.563	2174.966	0.001
Urban	23	4.6 (3.5-6.2)	99.280	3053.625	<0.001	23	1.7 (1.3-2.3)	97.807	1002.969	- <0.001
Geographical location:										
Central China	11	4.3 (2.6-7.0)	99.466	1872.103		11	2.0 (1.2-3.3)	98.552	690.498	
Eastern China	45	5.9 (4.9-7.1)	99.312	6459.533	< 0.001	45	1.6 (1.3-1.9)	97.311	1636.031	< 0.001
Western China	22	7.2 (5.4-9.7)	99.388	3429.291		25	2.9 (2.3-3.6)	97.463	946.153	-
Age:										
50-59	56	1.8 (1.5-2.2)	95.091	1120.306		56	0.6 (0.4-0.8)	94.379	978.466	
60-69	67	4.3 (3.7-4.9)	96.857	2100.172		68	1.4 (1.1-1.8)	96.959	2203.248	-
70-79	56	10.9 (9.0-13.0)	98.793	4556.433	<0.001	56	2.9 (2.4-3.5)	96.118	1416.784	- <0.001
80+	56	22.5 (18.1-27.6)	99.086	6020.206		56	7.6 (6.2-9.3)	96.149	1428.325	-

Table 4. Continued

		Moderate and	SEVERE VISU	AL IMPAIRME	NT			BLINDNESS	;	
Subgroup	N	Prevalence and 95% CI (%)	Hetero- geneity, I ² (%)	Q-value	P-value	N	Prevalence and 95% CI (%)	Hetero- geneity, I ² (%)	Q-value	P-value
Education:										
Illiterate	16	9.7 (8.2-11.5)	96.010	375.901		16	3.4 (2.5-4.5)	96.217	396.544	
Primary school and lower	17	4.4 (3.2-5.2)	97.325	598.045	<0.001	17	1.4 (1.0-2.0)	92.566	215.214	<0.001
Secondary school and above	23	3.6 (.4-5.2)	96.319	597.665	-	23	1.1 (0.7-1.7)	89.597	211.484	-
Examined year:										
1999-2009	40	4.9 (4.1-6.0)	98.993	3873.349	0.001	43	2.1 (1.8-2.6)	97.764	1878.643	0.001
2010-2017	34	7.9 (6.5-9.6)	99.321	4859.186	< 0.001	34	1.8 (1.4-2.2)	97.915	1582.527	< 0.001

CI - confidence interval

95% CI=4.7%-6.8% for BCVA). In geographical subgroup analysis, MSVI prevalence among the rural part of China is higher than the urban area (P<0.001). Meanwhile, for the subgroup analysis of age group using PVA for diagnosis, the MSVI prevalence rose from 5.4% (95% CI=4.3%-6.9%) in the 50-59 age group to 44.2% (36.3%-52.4%) in the 80+ age group, given by Figure 2, Panel A. As for BCVA, prevalence of MSVI increased from 1.8% (95% CI=1.5%-2.2%) to 22.5% (95% CI=18.1%-27.6%) (P<0.001). In terms of education level, populations that had obtained higher education were at a lower risk of developing MSVI both by PVA and BCVA (P<0.001). As for survey year, studies conducted in early years (1999-2009) had a lower MSVI prevalence than those conducted later (2010-2017) with statistical significance by PVA and BCVA (P<0.001). Studies conducted during 2010 and 2017 had a lower prevalence compared to those conducted between 1999 and 2009 with statistical significance (P<0.001).

Figure 2. Age-and gender-specific prevalence of MSVI and Blindness. **Panel A.** Age-and gender-specific prevalence of MSVI in term of PVA and BCVA. **Panel B.** Age-and gender-specific prevalence of blindness in term of PVA and BCVA. See also Figure S1 in the **Online Supplementary Document**.

In the blindness subgroup analyses, some results were similar to MSVI, as females, rural residents, and lower educational level were risk factors of developing blindness (P<0.001). For example, the blindness prevalence by PVA climbed up from 0.7% (95% CI=0.5%-0.9%) among 50-59 age group to 8.8% (7.1%-11.0%) among individuals over 80 years old (Figure 2, Panel-B). However, people dwelling in Western China were more likely to develop blindness by PVA (3.3%, 95% CI=2.5%-4.4%, P<0.001). Unlike MSVI, studies conducted during 2010 and 2017 had a lower prevalence compared to those conducted between 1999 and 2009 with statistical significance (P<0.001).

DISCUSSION

In our study, 72 studies with 90 data sets conducted in different parts of China were included, and the pooled prevalence of VI, MSVI, SVI and blindness among older Chinese populations (aged 50 years and above) were assessed. Using PVA as the classification index, prevalence of MSVI, SVI, VI and blindness were, 10.9% (95% CI=9.4%-12.6%), 2.7% (95% CI=1.9%-3.8%), 13.6% (95% CI: 11.8%-15.6%) and 2.2% (95% CI=1.8%-2.8%), respectively. As for BCVA, the pooled MSVI, SVI, VI and blindness prevalence were, 5.4% (95% CI=4.6%-6.2%), 1.4% (95% CI=1.0%-1.9%), 7.8% (95% CI=6.9%-8.9%) and 2.2% (95% CI: 1.9%-2.5%), respectively. Generally, the results of this meta-analysis are consistent with prior studies showing that blindness and MSVI occur more frequently among the older Chinese population [2,11,12].

In the subgroup analysis of gender, the pooled prevalence of females was much higher than that of male, in accordance with most of the original investigations. One possible explanation could be the longer life expectancy of females, which accounts for higher risk of developing age-related ocular diseases [1,3]. Additionally, anatomical and hormonal differences may contribute to the gender difference, as females are proved to be at higher risk of developing cataract, one of the common ocular diseases that leads to MSVI and blindness, but the mechanism is yet to be elucidated [97-99]. Also, the social status of females is much lower in some remote areas, leading to lower quality of health care.

Residing in specific geographical area may contribute to the development of blindness and MSVI; in this study dwelling in rural areas or Western China is considered to be an important risk factor. One explanation is the shortage of health care services in less developed and geographically remote places. Lack of health awareness is also a significant factor among rural residents [100]. The pooled MSVI prevalence of Central China seems higher than those of Western and Eastern China by PVA, however, this may be caused by the limited included studies conducted in Central China. Therefore, these results could assist in guiding the development and implementation of health care resources and policies to focus more on rural populations and promoting health awareness.

The significant difference of the prevalence of MSVI and blindness in the 4 age groups should be highlighted. The pooled prevalence rate were 10 times higher in the 80+ age group than the 50-59 age group. As we know, MSVI and blindness are mainly caused by age-related ocular diseases [1,3,4]. Screenings and early diagnosis methods are vital for reducing the prevalence of MSVI and blindness, and will improve the quality of life of older populations.

When comparing groups of education levels, individuals with higher education were less likely to suffer from MSVI and blindness. Education level is considered to be strongly correlated with socioeconomic status, which is correlated with access to quality medical services [101,102]. Higher education may also be linked to a better understanding and awareness of MSVI and blindness, resulting in timely treatment after the appearance of relevant symptoms [103,104]. Educational intervention plays an important role in raising awareness of the severity of MSVI and blindness in the general population.

In our study, the prevalence of MSVI is trending upward while the prevalence of blindness is downward trending when comparing studies surveyed in 1999-2009 with those conducted in 2010-2017. While the cataract surgery rate is trending upward, and the awareness of blindness prevention may help with the reducing of MSVI prevalence [105], the aging population is linked with more individuals at risk of blindness causing ocular diseases, such as age-related macular degeneration and diabetic retinopathy, where treatment in late-stage progression is often of limited efficacy [16,106]. Multiple strategies should be utilized to mitigate these problems, such as better screening strategies and improved education around preventing MSVI and blindness to the general public.

The strength of this meta-analysis lies in the large pooled sample size from a wide geographical distribution. In addition, this is one of the few meta-analyses that includes a significant amount of recently published Chinese studies, allowing for researchers worldwide to assess the current situation of MSVI and blindness among older Chinese populations. Moreover, our study is the first to include both PVA and BCVA. The quality assessment of all included studies with clearly defined evaluation tools should also be highlighted, ensuring the quality of this meta-analysis.

However, several limitations should be considered. Some relevant information in subgroup analysis, such as education level, was not available in all selected articles, which could affect the results to a certain extent. Meanwhile, although the Egger's tests and funnel plot did not suggest any publication bias, Begg's tests indicated potential bias may exist in pooled prevalence of blindness and MSVI by BCVA, which may have some impact on the results. Additionally, although we have included both PVA and BCVA as a diagnosis index, using PVA

and BCVA in one study is not as common, which may influence the analysis process. The comparison of the accuracy and practicability of PVA and BCVA was not able to be conducted this time, though we will consider this in future studies.

In conclusion, this meta-analysis offers a comprehensive and up-to-date estimate of MSVI and blindness among older Chinese populations, with the subgroups of gender, district, geographical location, education level and survey year analyzed. The results of this meta-analysis indicate that the prevalence of MSVI and blindness remains high and with discrepancy in different subgroups. Further studies are needed to explore improved diagnosis methods and the mechanism of risk factors affecting MSVI and blindness prevalence.

Funding: This work was supported by the National Natural Science Foundation of China (81873673, 81900841) and the Fundamental Research Funds of the State Key Laboratory of Ophthalmology.

Authorship contributions: Conception and design: DZ, GJ; Analysis and interpretation: AC, CY, YL; Writing of the article: MZ, DG, AC;Critical revision of the article: DZ, GJ; Data collection: DG, MZ; Administrative, technical or logistical support: DZ, GJ.

Competing interests: The authors completed the ICMJE Unified Competing Interest form (available upon request from the corresponding author), and declare no conflicts of interest.

Additional material

Online Supplementary Document

- 1 Fang EF, Scheibye-Knudsen M, Jahn HJ, Li J, Ling L, Guo H, et al. A research agenda for aging in China in the 21st century. Ageing Res Rev. 2015;24:197-205. Medline:26304837 doi:10.1016/j.arr.2015.08.003
- 2 Cheng CY, Wang N, Wong TY, Congdon N, He M, Wang YX, et al. Prevalence and causes of vision loss in East Asia in 2015: magnitude, temporal trends and projections. Br J Ophthalmol. 2020;104:616-22. Medline:31462416 doi:10.1136/bjophthalmol-2018-313308
- 3 Peng X. China's demographic history and future challenges. Science. 2011;333:581-7. Medline:21798939 doi:10.1126/science.1209396
- 4 Keeffe J, Taylor HR, Fotis K, Pesudovs K, Flaxman SR, Jonas JB, et al. Prevalence and causes of vision loss in Southeast Asia and Oceania: 1990-2010. Br J Ophthalmol. 2014;98:586-91. Medline:24407561 doi:10.1136/bjophthalmol-2013-304050
- 5 GBD 2017 DALYs and HALE Collaborators. Global, regional, and national disability-adjusted life-years (DALYs) for 359 diseases and injuries and healthy life expectancy (HALE) for 195 countries and territories, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet. 2018;392:1859-922. Medline:30415748 doi:10.1016/S0140-6736(18)32335-3
- 6 Wang W, Yan W, Muller A, Keel S, He M. Association of Socioeconomics With Prevalence of Visual Impairment and Blindness. JAMA Ophthalmol. 2017;135:1295-302. Medline:29049446 doi:10.1001/jamaophthalmol.2017.3449
- 7 Fenwick EK, Ong PG, Man RE, Cheng CY, Sabanayagam C, Wong TY, et al. Association of Vision Impairment and Major Eye Diseases With Mobility and Independence in a Chinese Population. JAMA Ophthalmol. 2016;134:1087-93. Medline:27467140 doi:10.1001/jamaophthalmol.2016.2394
- 8 Bourne RRA, Flaxman SR, Braithwaite T, Cicinelli MV, Das A, Jonas JB, et al. Magnitude, temporal trends, and projections of the global prevalence of blindness and distance and near vision impairment: a systematic review and meta-analysis. Lancet Glob Health. 2017;5:e888-97. Medline:28779882 doi:10.1016/S2214-109X(17)30293-0
- 9 Zhao J, Xu X, Ellwein LB, Cai N, Guan H, He M, et al. Prevalence of Vision Impairment in Older Adults in Rural China in 2014 and Comparisons With the 2006 China Nine-Province Survey. Am J Ophthalmol. 2018;185:81-93. Medline:29102607 doi:10.1016/j.ajo.2017.10.016
- 10 Zhao J, Ellwein LB, Cui H, Ge J, Guan H, Lv J, et al. Prevalence of vision impairment in older adults in rural China: the China Nine-Province Survey. Ophthalmology. 2010;117:409-16. Medline:20079923 doi:10.1016/j.ophtha.2009.11.023
- 11 Cheng JW, Cheng SW, Cai JP, Li Y, Wei RL. The prevalence of visual impairment in older adults in mainland China: a systemaxtic review and meta-analysis. Ophthalmic Res. 2013;49:1-10. Medline:22965304 doi:10.1159/000327144
- 12 Song P, Wang H, Theodoratou E, Chan KY, Rudan I. The national and subnational prevalence of cataract and cataract blindness in China: a systematic review and meta-analysis. J Glob Health. 2018;8:010804. Medline:29977532 doi:10.7189/jogh.08.010804
- 13 Stevens GA, White R, Flaxman S, Price H, Jonas J, Keeffe J, et al. Global prevalence of vision impairment and blindness: magnitude and temporal trends, 1990-2010. Ophthalmology. 2013;120:2377-84. Medline:23850093 doi:10.1016/j.ophtha.2013.05.025
- 14 Yang C, Zhang L, Zhu P, Zhu C, Guo Q. The prevalence of tic disorders for children in China: A systematic review and meta-analysis. Medicine (Baltimore). 2016;95:e4354. Medline:27472724 doi:10.1097/MD.00000000004354
- 15 Loney PL, Chambers LW, Bennett KJ, Roberts JG, Stratford PW. Critical appraisal of the health research literature: prevalence or incidence of a health problem. Chronic Dis Can. 1998;19:170-6. Medline:10029513

REFERENCES

- 16 Jin G, Zou M, Chen A, Zhang Y, Young CA, Wang SB, et al. Prevalence of age-related macular degeneration in Chinese populations worldwide: A systematic review and meta-analysis. Clin Exp Ophthalmol. 2019;47:1019-27. Medline:31268226 doi:10.1111/ceo.13580
- 17 Zhu RR, Shi J, Yang M, Guan HJ. Prevalences and causes of vision impairment in elderly Chinese: a socioeconomic perspective of a comparative report nested in Jiangsu Eye Study. Int J Ophthalmol. 2016;9:1051-6. Medline:27500116
- 18 Gu Y, Wen Y, Liang L, Wang L. Epidemiological sampling survey on blindness and low vision in two locations of Anhui. [In Chinese]. Journal of Practical Preventing Blind. 2010;5:24-31.
- 19 Li EY, Liu Y, Zhan X, Liang YB, Zhang X, Zheng C, et al. Prevalence of blindness and outcomes of cataract surgery in Hainan Province in South China. Ophthalmology. 2013;120:2176-83. Medline:23714323 doi:10.1016/j.ophtha.2013.04.003
- 20 Pan CW, Qian DJ, Sun HP, Ma Q, Xu Y, Song E. Visual Impairment among Older Adults in a Rural Community in Eastern China. J Ophthalmol. 2016;2016:9620542. Medline:27777793 doi:10.1155/2016/9620542
- 21 Chen J, Xiao Y, Zhang Y. Analysis of the Vision Condition of People Above 50 years old in Rural-urban Continuum, Shanghai. [In Chinese]. Chinese Primary Health Care. 2016;30:41-6.
- 22 Hu H. Epidemiological survey of blindness and low vision among people aged 50 and over in Luxi County of Yunnan Province [In Chinese] [Master Degree]. Kunming Medical University; 2016.
- 23 Zhang X, Sun H, Li Z, Zhao L, Yuan X, Ma Z, et al. the investigation of prevalence and causes of blindness among people aged 40 or above in Sangzi, Ji County, Tianjin. [In Chinese]. Zhonghua Yan Ke Za Zhi. 2005;22:749-50.
- 24 Liu S, Chen L, Ouyang L, Peng Q. The survey of prevalence of blindness in Nan'an District of Chongqing. [In Chinese]. Zhonghua Yan Ke Za Zhi. 2007;43:722-5. Medline:18001571
- 25 Li L, Guan H, Xun P, Zhou J, Gu H. Prevalence and causes of visual impairment among the elderly in Nantong, China. Eye (Lond). 2008;22:1069-75. Medline:18464798 doi:10.1038/eye.2008.53
- **26** Wu S, Qiu Y, Sun X. The investigation and risk factors of visual impairment among the elderly in Jiashan County, Zhejiang Province. [In Chinese]. Pract Prev Med. 2015;22:333-4.
- 27 Li Z, Cui H, Liu P, Zhang L, Yang H, Zhang L. Prevalence and causes of blindness and visual impairment among the elderly in rural southern Harbin, China. Ophthalmic Epidemiol. 2008;15:334-8. Medline:18850470 doi:10.1080/09286580802227386
- 28 Chen N, Huang TL, Tsai RK, Sheu MM. Prevalence and causes of visual impairment in elderly Amis aborigines in Eastern Taiwan (the Amis Eye Study). Jpn J Ophthalmol. 2012;56:624-30. Medline:22961342 doi:10.1007/s10384-012-0178-8
- 29 Li T, Du L, Du L. Prevalence and Causes of Visual Impairment and Blindness in Shanxi Province, China. Ophthalmic Epidemiol. 2015;22:239-45. Medline:26218106 doi:10.3109/09286586.2015.1009119
- 30 Yao Y, Shao J, Sun W, Zhu J, Fu DH, Guan H, et al. Prevalence of blindness and causes of visual impairment among adults aged 50 years or above in southern Jiangsu province of China. Pak J Med Sci. 2013;29:1203-7. Medline:24353720
- 31 Zhang G, Li Y, Teng X, Wu Q, Gong H, Ren F, et al. Prevalence and causes of low vision and blindness in Baotou: A cross-sectional study. Medicine (Baltimore). 2016;95:e4905. Medline:27631267 doi:10.1097/MD.000000000004905
- 32 Zhang Y, Wang H, Liu J, Wang T, Cao S, Zhou D, et al. Prevalence of blindness and low vision: a study in the rural Heilongjiang Province of China. Clin Exp Ophthalmol. 2012;40:484-9. Medline:21902783 doi:10.1111/j.1442-9071.2011.02682.x
- 33 Duan G. Epidemiological Survey on Low Vision and Blindness in Persons More than 50 Years Old in Fenghuang County of Hunan Province. [In Chinese]. Journal of Clinical Research. 2011;28:1452-4.
- 34 Duan G, Wang Y, He G, Yang J, Li A, Li J, et al. Epidemiological Survey of Low Vision and Blindness in the Population Aged 50 Years and Above in Huayuan County, Hunan Province. [In Chinese]. Pract Prev Med. 2011;18:1423-5.
- 35 Fu J, Xie T, Zhang M, Mi N, Mai D, Chen X. Prevalence of low vision and blindness in defined population in rural and urban areas in Xinjiang. [In Chinese]. Chinese Journal of Practical Ophthalmology. 2012;30:756-60.
- **36** Huang X, Ye Q, Liang X, Lin R, Li L, Zeng Z, et al. The epidemiological investigation of blindness and low vision among individuals aged 50 or above in Taiping county, Mazhang District, Zhanjiang. [In Chinese]. Journal of Guangdong Medical College. 2014;32:105-7.
- 37 Huang Y. Reasons of visual impairment and cataract surgical rate of elder people aged 60 years old or more in Shuxin Town, Chongming District, Shanghai. [In Chinese]. China Medical Herald. 2018;15:101-7.
- **38** Liu JP, Zhao S, Li X, Wei R, Wang T, Hua N, et al. Prevalence survey of visual impairment in a multiethnic rural district in the high altitude area of Yunnan Province, China. [In Chinese]. Zhonghua Yan Ke Za Zhi. 2011;47:791-6. Medline:22177123
- **39** Liu X, Li Y, Liu D, Luo S, Lu Y, Liang Y. The epidemiological investigation of blindness and visual impairment among individuals aged 50 or above in Foshan. [In Chinese]. Guangdong Yixue. 2016;37:422-5.
- 40 Ma X. An epidemiological investigation of blindness and vision impairment in older adults of Luwan District, Shanghai. [In Chinese]. Chinese Journal of Disease Control & Prevention. 2012;16:658-60.
- **41** Bijiang MN. Survey of blindness and low vision among residents in Shuimogou District, Urumqi, China in 2010. [In Chinese]. Zhonghua Yi Xue Za Zhi. 2012;92:743-7. Medline:22781353
- **42** Yusup M. Tracely survey of visual damage among Uigur peasants in Kuche county of Xinjiang [In Chinese] [Master Degree]: Xinjiang Medical University; 2010.
- 43 Meng Y. The prevalence and causes of blindness and visual impairment among individuals aged 60 or above in Tianjin. [In Chinese]. Zhongguo Laonianxue Zazhi. 2016;36:176-8.
- 44 Pei J, He Y, Ren B, Jia J, Liu H, Wan P, et al. Investigation of blindness and low vision prevalence in a rural population in Shaanxi Province. [In Chinese]. Recent Advances in Ophthalmology. 2014;34:643-6.
- 45 Qi H. An epidemiological survey on blindness and low vision among adults aged 60 years or above in Lujiazui blocks, Pudong New Area. [In Chinese]. Chinese Journal of Disease Control & Prevention. 2010;14:748-50.

- **46** Qiao L. Rapid assessment of avoidable blindness in Mianning county in Sichuan Province. [In Chinese]. Journal of Practical Preventing Blind. 2018;13:125-30.
- 47 Shen F, Wang C, Liang Q, Chen C. Investigation of Ophthalmopathy in Adults Aged over 50 in Sanhe Town of Jincheng city. [In Chinese]. Chinese Healthcare Innovation. 2010;5:94-6.
- **48** Shen B. Morbidity survey of blindness and low vision among senior residents in Huaihai communities of Shanghai. [In Chinese]. Chinese Journal of General Practitioners. 2013;12:383-4.
- **49** Sun W. Causes of blindness and low vision of the people over 50 years old in Binhu Area of Wuxi City. [In Chinese]. Chinese Journal of Ocular Fundus Diseases. 2012;28:602-5.
- **50** Wang G, Zhou C, Bi H, Xu L. Survey on Prevalence and Causes of Blindness and Low Vision Among Rural Adults Aged 50 Years and above, Tengzhou City, 2008. Preventive Medicine Tribune. 2012;18:574-5.
- **51** Wu X, Yi Q, Wu Y, Wang Y, Yuan J, Guo W, et al. Epidemiological investigation of ophthalmopathy among adults aged 50 years or above in Ningbo. [In Chinese]. Chinese Journal of General Practice. 2019;17:491-5.
- 52 Tang L, Deng R. The investigation of ophthalmopathy among individuals aged 55 or above in Chongqing. [In Chinese]. Zhongguo Laonianxue Zazhi. 2012;32:1465-6.
- 53 Zhang S, Jia S, Cao Z. Cross-sectional Study on Blindness and Low VIsion Among the Elderly in Xiangcheng District, Suzhou. [In Chinese]. Journal of Occupational Health and Damage. 2014;29:75-7.
- 54 Zhang J. Epidemiological survey of blindness in Foping of Shaanxi province. [In Chinese]. Int J Ophthalmol. 2008;8:1416-7.
- 55 Zhang X, Li EY, Leung CKS, Musch DC, Tang X, Zheng C, et al. Prevalence of visual impairment and outcomes of cataract surgery in Chaonan, South China. PLoS One. 2017;12:e0180769. Medline:28797099 doi:10.1371/journal.pone.0180769
- 56 Xu L, Wang Y, Li Y, Wang Y, Cui T, Li J, et al. Causes of blindness and visual impairment in urban and rural areas in Beijing: the Beijing Eye Study. Ophthalmology. 2006;113:1134.e1-11. Medline:16647133 doi:10.1016/j.ophtha.2006.01.035
- 57 Chen L, Ren B, Yang J, He Y, Sun N. Prevalence of Blindness and Cataract surgery in rural population in Shaanxi Province. [In Chinese]. Chinese Journal of Practical Ophthalmology. 2006;24:648-53.
- **58** Qi C, Li Q, Wang T, Dong L, Deng J, Xia X, et al. Epidemiologic survey of blindness and low vision in Luogang country of Guangzhou. [In Chinese]. Chinese Journal of Practical Ophthalmology. 2008;26:1144-6.
- **59** Yang L, Tu X, Hu H, Xiao S. Epidemiological survey of low vision and blindness of senile persons in Lecong town, Shunde blocks, Guangdong province. [In Chinese]. China Journal of Modern Medicine. 2009;19:2012-4.
- 60 Wei M, Lei C, Chen H, Fan Y. Analysis of the situation of visual disability of Sichuan Province. [In Chinese]. Int J Ophthalmol. 2007;7:1652-4.
- **61** Gao X, Duan Z. The epidemiological investigation of low vision and blindness among the elderly in some areas of Harbin. [In Chinese]. Harbin Medical Journal. 2004;24:17-8.
- 62 Zhao X, Tian B, Hao Y, Zhang X, He Y, Li L, et al. Survey of blindness and low vision in the middle-aged and elder population in community. [In Chinese]. Chinese Ophthalmic Research. 2009;27:1126-31.
- **63** Xie T, Chen X, Eubulihasumu M, Song Y, Wang Y. Survey of blindness and low vision among Uigur peasants above 40 in Kuche country of Xinjiang. [In Chinese]. Chinese Ophthalmic Research. 2007;25:785-8.
- 64 Zhang T, Jiang Y, Tang J, Fan Y. An epidemiological survey and the treatment on blindness and low vision among adults aged 45 years or above in Shawan county of Xinjiang, China. [In Chinese]. Chinese Journal of Practical Ophthalmology. 2004;22:934-6.
- **65** Zhou J, Yuan Y, Zhang X, Guan HJ. A prevalence investigation of blindness and low vision in 2008 among adults aged 60 years or above in 2 villages of Nantong. [In Chinese]. Zhonghua Yan Ke Za Zhi. 2012;48:908-14. Medline:23302246
- **66** Tong XW. A prevalence investigation of blindess and vision impairment in 2009 in older adults of Dachang Blocks of Baoshan Distict, Shanghai, China. [In Chinese]. Zhonghua Yan Ke Za Zhi. 2011;47:785-90. Medline:22177122
- 67 Tang Y, Wang X, Wang J, Huang W, Gao Y, Luo Y, et al. Prevalence and Causes of Visual Impairment in a Chinese Adult Population: The Taizhou Eye Study. Ophthalmology. 2015;122:1480-8. Medline:25986897 doi:10.1016/j.ophtha.2015.03.022
- **68** Li J, Zhong H, Cai N, Luo T, Li J, Su X, et al. The prevalence and causes of visual impairment in an elderly Chinese Bai ethnic rural population: the Yunnan minority eye study. Invest Ophthalmol Vis Sci. 2012;53:4498-504. Medline:22678502 doi:10.1167/iovs.12-9429
- **69** Li X, Zhou Q, Sun L, Wang Z, Han S, Wu S, et al. Prevalence of blindness and low vision in a rural population in northern China: preliminary results from a population-based survey. Ophthalmic Epidemiol. 2012;19:272-7. Medline:22917525 doi: 10.3109/09286586.2012.700081
- 70 Yang M. Epidemiological survey of visual impairment in Funing County, Jiangsu. [In Chinese]. Zhonghua Yan Ke Za Zhi. 2017;53:502-8. Medline:28728283
- 71 Yi M. Prevalence of blindness and moderate and severe visual impairment among adults aged 50 years or above in the Shunqing district of Nanchong [In Chinese] [Master Degree]: North Sichuan Medical College; 2015.
- 72 Hu J, Ji H, Wang X, Guan H, Zhang J, Xu Y. Cross-sectional study of blindness and low vision among adults aged 50 years or above in Nantong rural area. [In Chinese]. Medical Journal of Communications. 2010;24:133-6.
- 73 Zhou W, Liu C, Wu Z, Zhang X, Hao Z, Li S, et al. The investigation of blindness and moderate and severe visual impairment among the elderly aged 60 or above in the southern part of Pudong District. [In Chinese]. Shanghai Journal of Preventive Medicine. 2017;29:78-80.
- 74 Wang LH. Prevalence of visual impairment and blindness in older adults in rural Shandong Province. [In Chinese]. Zhonghua Yan Ke Za Zhi. 2012;48:226-33. Medline:22800420
- 75 Huang S, Zheng Y, Foster PJ, Huang W, He M. Prevalence and causes of visual impairment in Chinese adults in urban southern China. Arch Ophthalmol. 2009;127:1362-7. Medline:19822854 doi:10.1001/archophthalmol.2009.138

REFERENCES

7ou et al.

- 76 Hou B, De J, Wu H, Gesang D, Bu P, Qiangba S, et al. Prevalence of blindness among adults aged 40 years or above in Linzhou county of Lasa. [In Chinese]. Zhonghua Yan Ke Za Zhi. 2002;38:589-93. Medline:12487906
- 77 Wang W. A prevalence investigation of blindness and vision impairment in aged people in Langxia Town, Jinshan District, Shanghai, China. [In Chinese]. Recent Advances in Ophthalmology. 2011;31:969-75.
- **78** Liu C, Zhou W, Zhao R, Lu Y, Zhang X, Ji P, et al. Analyzing Visual Acuity Status of 70 Years Old and Older People in Pudong New Area. [In Chinese]. Chinese Primary Health Care. 2013;10:85-7.
- **79** Deng L. Investigation of the prevalence and the risk factors of blindness and vision impairment with moderate and severe degree among adults aged 50 years and above in Yugan country [In Chinese] [Master Degree]. Nanchang University; 2016.
- **80** Zhou J. Prevalence of Blindness and Severe Vision Loss in Luxi County of Yunnan Province. [In Chinese]. Journal of Kunming Medical University. 2013;34:51-7.
- **81** Wu M. Assessment of the prevalence of blindness among people aged 50 and above in Luliang County of Yunnan Province. [In Chinese]. Journal of Traditional Chinese Ophthalmology. 2011;21:106-9.
- **82** Wu M, Zhu M. Epidemiologic study of blindness in population aged 50 and above of Kunming city. [In Chinese]. Chinese Ophthalmic Research. 2008;26:551-3.
- **83** Huang XB, Zou H, Wang N, Wang W, Fu J, Shen B, et al. A prevalence survey of blindness and visual impairment in adults aged equal or more than 60 years in Beixinjing blocks of Shanghai, China. [In Chinese]. Zhonghua Yan Ke Za Zhi. 2009;45:786-92. Medline:20137282
- **84** Song W, Sun X, Shao Z, Zhou X, Kang Y, Sui H, et al. Prevalence and causes of visual impairment in a rural North-east China adult population: a population-based survey in Bin County, Harbin. Acta Ophthalmol. 2010;88:669-74. Medline:19900201 doi:10.1111/j.1755-3768.2009.01768.x
- **85** Xiong X. The prevalence and causes of visual impairment in an elderly Chinese Tujia ethnic rural population: the Chongqing Minority Eye Study [In Chinese] [Master Degree]: Chongqing Medical University; 2018.
- **86** Liang YB, Friedman DS, Wong TY, Zhan SY, Sun LP, Wang JJ, et al. Prevalence and causes of low vision and blindness in a rural chinese adult population: the Handan Eye Study. Ophthalmology. 2008;115:1965-72. Medline:18684506 doi:10.1016/j. ophtha.2008.05.030
- 87 Cai N, Yuan Y, Zhao J, Zhong H, Ellwein LB, Chen M, et al. Prevalence and causes of blindness and moderate and severe visual impairment among adults aged 50 years or above in Luxi County of Yunnan Province: the China Nine-Province Survey. [In Chinese]. Zhonghua Yan Ke Za Zhi. 2013;49:801-6. Medline:24330929
- 88 Liu H. Prevalence of blindness and moderate and severe visual impairment among adults aged 50 years or above in the Shunyi District of Beijing: the China Nine-Province Survey. [In Chinese]. Zhonghua Yan Ke Za Zhi. 2012;48:199-204. Medline:22800416
- 89 Lu H. Prevalence of blindness and moderate and severe visual impairment among adults aged 50 years or above in Qidong City of jiangsu Province: the China Nine-Province Survey. [In Chinese]. Zhonghua Yan Ke Za Zhi. 2012;48:205-10. Medline:22800417
- 90 Lü JH. Prevalence and causes of blindness and moderate and severe visual impairment among adults aged 50 years or above in Longyao County of Hebei Province: the China Nine-Province Survey. [In Chinese]. Zhonghua Yan Ke Za Zhi. 2013;49:783-8. Medline:24330926
- **91** Ma XZ. Prevalence and causes of blindness and moderate and severe visual impairment among adults aged 50 years or above in Changji City of XinjiangUygur Autonomous Region: the China Nine-Province Survey. [In Chinese]. Zhonghua Yan Ke Za Zhi. 2013;49:795-800. Medline:24330928
- 92 Yi JL. Prevalence of blindness and moderate and severe visual impairment among adults aged 50 years or above in Ji'an county of Jiangxi province: the China Nine-Province Survey. [In Chinese]. Zhonghua Yan Ke Za Zhi. 2012;48:524-9. Med-line:22943808
- **93** Ge J, He M, Ellwein LB, He N, Yang M, Wang Y, et al. Prevalence of blindness and moderate and severe visual impairment among adults aged 50 years or above in Yangxi County of Guangdong Province: the China Nine-Province Survey. [In Chinese]. Chinese Journal of Ophthalmology. 2014;50:167-72. Medline:24841810
- 94 Yin ZQ. Prevalence and causes of blindness and moderate and severe visual impairment among adults aged 50 years or above in Yongchuan District of Chongqing City: the China Nine-Province Survey. [In Chinese]. Zhonghua Yan Ke Za Zhi. 2013;49:777-82. Medline:24330925
- 95 Zhang L, Cui H, Zhao J, Ellwein LB, Li Z, Li M, et al. Prevalence of blindness and moderate and severe visual impairment among adults aged 50 years or above in Shuangcheng City of Heilongjiang Province. [In Chinese]. Zhonghua Yan Ke Za Zhi. 2014:50:173-8. Medline:24841811
- **96** Neng L, Huizhong C, Pinfang G. Investigation on blindness and low vision of the elderly in Shihua area of Shanghai. Chronic Pathematology Journal. 2019;4:489-92.
- 97 Mukesh BN, Le A, Dimitrov PN, Ahmed S, Taylor HR, McCarty CA. Development of cataract and associated risk factors: the Visual Impairment Project. Arch Ophthalmol. 2006;124:79-85. Medline:16401788 doi:10.1001/archopht.124.1.79
- 98 Mitchell P, Cumming RG, Attebo K, Panchapakesan J. Prevalence of cataract in Australia: the Blue Mountains eye study. Ophthalmology. 1997;104:581-8. Medline:9111249 doi:10.1016/S0161-6420(97)30266-8
- **99** Age-Related Eye Disease Study Research Group. Risk factors associated with age-related nuclear and cortical cataract: a case-control study in the Age-Related Eye Disease Study, AREDS Report No. 5. Ophthalmology. 2001;108:1400-8. Med-line:11470690 doi:10.1016/S0161-6420(01)00626-1
- 100 Yuan F, Qian D, Huang C, Tian M, Xiang Y, He Z, et al. Analysis of awareness of health knowledge among rural residents in Western China. BMC Public Health. 2015;15:55. Medline:25637079 doi:10.1186/s12889-015-1393-2

- 101 Pincus T. Formal educational level–a marker for the importance of behavioral variables in the pathogenesis, morbidity, and mortality of most diseases? J Rheumatol. 1988;15:1457-60. Medline:3204595
- **102** Pincus T, Callahan LF. Associations of low formal education level and poor health status: behavioral, in addition to demographic and medical, explanations? J Clin Epidemiol. 1994;47:355-61. Medline:7730860 doi:10.1016/0895-4356(94)90156-2
- 103 Bonaccio M, Di Castelnuovo A, Costanzo S, Persichillo M, Donati MB, de Gaetano G, et al. Interaction between education and income on the risk of all-cause mortality: prospective results from the MOLI-SANI study. Int J Public Health. 2016;61:765-76. Medline:27091201 doi:10.1007/s00038-016-0822-z
- 104 Lee YH, Chiang T, Liu CT. Residents' educational attainment and preventive care utilization in China. Int J Health Care Qual Assur. 2018;31:41-51. Medline:29504840 doi:10.1108/JJHCQA-01-2017-0001
- 105 Wang W, Yan W, Fotis K, Prasad NM, Lansingh VC, Taylor HR, et al. Cataract Surgical Rate and Socioeconomics: A Global Study. Invest Ophthalmol Vis Sci. 2016;57:5872-81. Medline:27802517 doi:10.1167/iovs.16-19894
- 106 Jin G, Xiao W, Ding X, Xu X, An L, Congdon N, et al. Prevalence of and Risk Factors for Diabetic Retinopathy in a Rural Chinese Population: The Yangxi Eye Study. Invest Ophthalmol Vis Sci. 2018;59:5067-73. Medline:30357401 doi:10.1167/ iovs.18-24280

REFERENCES