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Background Limited ultrasound capacity in low-re-
source settings makes correct gestational age (GA) 
dating difficult. Previous work demonstrated that 
newborn metabolic profiles can accurately determine 
gestational age, but this relationship has not been 
evaluated in low-income countries. The objective of 
this study was to validate and adapt a metabolic GA 
dating model developed using newborn blood spots 
for use in a low-resource setting in rural Uganda.

Methods A cohort of pregnant women was followed 
prospectively and heel stick blood spots were collect-
ed from 666 newborns in Busia, Uganda at the time 
of delivery. They were dried, frozen, and shipped 
to the US where they were tested for 47 metabo-
lites. Metabolic model performance was assessed us-
ing early ultrasound determined GA as the standard. 
Models tested included previously built multivariable 
models and models specifically adapted to the Busia 
population.

Results The previously built model successfully dat-
ed 81.2% of newborns within two weeks of their ul-
trasound GA. Only 4.8% of GAs were off by greater 
than three weeks. In the model adapted to the lo-
cal population, 89.2% of GAs matched their corre-
sponding ultrasound to within two weeks. The mod-
el-derived preterm birth rate was 7.2% compared to 
5.9% by ultrasound.

Conclusions These results suggest that metabol-
ic dating is a reliable method to determine GA in 
a low-income setting. Metabolic dating offers the 
potential to better elucidate preterm birth rates in 
low-resource settings, which is important for assess-
ing population-level patterns, tailoring clinical care, 
and understanding the developmental trajectories of 
preterm infants.
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In 2015, an estimated 1.055 million children under the age of five died from complications of preterm birth 
making it the leading cause of under-5 mortality worldwide ([1]). For the over 14 million preterm infants 
born annually [2] who do survive, complications including infection, neurological damage, sepsis, respira-
tory distress, necrotizing enterocolitis, and hearing and vision difficulties are common [3-8]. Moreover, a 
disproportionate share of preterm births occur in low-income countries. Specifically, the countries within 
Sub-Saharan Africa are estimated to account for 25% of global livebirths but 28.2% of global preterm births 
[2]. Particularly challenging, is that data from low-income countries is vulnerable to a high degree of uncer-
tainty due to incomplete or lack of robust birth surveillance systems, absence of standardized definitions of 
preterm birth and viability, and lack of ability to accurately ascertain gestational age [2,9].

The inability to accurately ascertain gestational ages is a barrier to not only describing the epidemiology of 
preterm birth, but also to designing, implementing, and monitoring interventions that aim to improve health 
outcomes in this vulnerable population. Without reliable gestational age information, health systems can fail 
to efficiently utilize limited resources, and clinicians may miss opportunities for effective therapeutic inter-
ventions targeting issues specific to preterm infants. The current standard of care to determine gestational 
age is ultrasound dating early on in pregnancy, but ultrasound technology isn’t widely available in low-in-
come countries. Alternative methods include using last menstrual period (LMP), clinical assessments like 
the new Ballard score [10] and Dubowitz score [11], and birthweight alone but none of these methods have 
been determined to yield an accurate gestational age – particularly when there is co-morbid growth restric-
tion [9,12-15]. LMP has been shown to lack accuracy due to irregular menstrual cycles and unreliable re-
call, which is compounded in low-income countries by late presentation to antenatal care [9,13,15,16]. Clin-
ical assessments like those included in the Ballard and Dubowitz scores are often imprecise due to skill and 
training discrepancies between evaluators [9,12,14,15], and difficulty when gauging the gestational age of 
growth-restricted newborns [9,12].

Recently, the World Health Organization (WHO) prioritized the development and validation of more reliable 
methods of gestational age dating in order to more accurately estimate preterm birth [17]. One such method 
pioneered by our group and others is to use metabolic markers from newborn heel-stick blood spots collect-
ed during routine newborn screening to determine gestational age at birth [18-20]. Our group and others 
have found that metabolites measured in newborn heel-stick samples can date ≥90% of newborns within two 
weeks of dating by early ultrasound – including in babies with intrauterine growth restriction (IUGR) [18,19].

The goal of this study was to validate and adapt a metabolic gestational age dating model [19] developed us-
ing newborn heel stick blood spots for use in a low-resource setting in rural Uganda. Additionally, we sought 
to compare the performance of the heel-stick model to a gestational age dating by metabolic profile using a 
cord blood sample collected within three hours of the heel stick sample. The successful development of nov-
el methods to determine gestational age at birth could be crucial to more accurate assessments of preterm 
birth rates in low-income settings and has the potential to inform clinical care of infants born prematurely in 
these settings.

METHODS
This prospective cohort study was nested within a double-blind, randomized clinical trial comparing the ef-
ficacy and safety of sulfadoxine-pyrimethamine (SP) vs dihydroartemisinin-piperaquine (DP) as intermittent 
preventative treatment of malaria during pregnancy [21]. The study took place between September 2016 and 
December 2017 in the Busia District of southeastern Uganda, which is characterized by intense malaria trans-
mission. Individuals eligible for the study included women who were at least 16 years of age with a viable preg-
nancy between 12 and 20 weeks gestation determined by ultrasound, and who were HIV-uninfected. Written 
informed consent covering mothers and prospective infants was required from each participant along with 
agreements to: avoid taking medications that were outside of the study protocol, willingness to deliver at the 
hospital in Busia, and come to the clinic for any illness during pregnancy including a febrile event. Women 
were excluded if they had a history of antimalarial therapy during the current pregnancy, had known adverse 
responses to SP or DP, were in early or active labor, or had a currently active or chronic medical condition re-
quiring inpatient evaluation. At enrollment, women underwent an initial standardized routine medical exam-
ination, including pre-natal ultrasound for gestational age dating, and were given a long-lasting insecticidal bed 
net. Participants were then randomized to receive either monthly SP or DP during pregnancy. Routine visits 
were conducted every four weeks at the clinic in Busia and any additional medical care was also received at 
the clinic, which was open every day. Additional information concerning study randomization and drug ad-
ministration has been published previously [21].



Gestational age dating using newborn metabolic screening

V
IE

W
PO

IN
TS

PA
PE

RS

www.jogh.org • doi: 10.7189/jogh.11.04012	 3	 2021  •  Vol. 11 •  04012

The majority of women delivered their babies at the hospital adjacent to the clinic. Women who delivered 
at home were seen by study staff at the time of delivery or as soon as possible after delivery. At the time of 
delivery, a standardized assessment including information on congenital conditions, specimens collected, 
birthweight, infant sex, mode of delivery, and complications (pre-eclampsia, eclampsia, placental abrup-
tion, uterine rupture, fetal injury, cephalopelvic disproportion, and maternal hemorrhage) was completed. 
Preterm birth was defined as being born at less than 37 completed weeks of gestation.

Specimens collected for this study included umbilical cord blood and blood from newborn infant heel sticks. 
Cord blood was collected using a syringe inserted into the umbilical vein. From the syringe, 4-5 blood spots 
were collected. Newborn heel stick blood spots were obtained using standardized methodology from routine 
newborn screening [22]. Cord blood was collected at the time of delivery and blood from heel sticks with-
in 3 hours of delivery in the majority of cases. In the occurrence of a home delivery, heel-stick blood spots 
were collected as soon as possible but cord blood was unable to be collected. Both specimen types were col-
lected onto Whatman 903 protein saver filter paper cards. After allowing blood spots to dry, the filter pa-
per cards were individually sealed in bags with desiccant pouches and stored in a liquid nitrogen-charged 
cryotank until shipped. Specimens were shipped approximately every two weeks from Kampala, Uganda 
to the University of California San Francisco using a liquid nitrogen-charged cryoshipper. Upon arrival in 
California, samples were removed, placed on dry ice, and sent to the State Hygienic Laboratory (SHL) in 
Ankeny, Iowa. Throughout the process, the cold-chain was maintained at -20°C or lower in order to pre-
vent the degradation of acylcarnitines and amino acids. Metabolic markers measured by SHL included 2 
enzymes, 1 hormone, 12 amino acids, and 32 acylcarnitines and were measured using either tandem mass 
spectrometry, time-resolved fluoroimmunoassay, or semiquantitative enzymatic assay. In depth methodol-
ogy of these techniques as performed by SHL has been described previously [23,24].

Methods and protocols for the study were approved by the ethics committees of Makerere University School 
of Biomedical Sciences (Kampala, Uganda), the Uganda National Council for Science and Technology (Kam-
pala, Uganda), and the Committee of Human Research at the University of California San Francisco.

Statistical analyses

A natural log transformation was performed on all metabolites to reduce skewness and minimize the influ-
ence of outliers. Given that our sample size was too small to create a reliable small for gestational age mea-
surement, two independent alternative methods were used to determine the 10th percentile birthweight 
cutoffs by gestational age and sex. The first method utilized the Intergrowth-21st international standard-
ized growth curves [25,26]. The second method used a WHO calculator [27] that creates standardized 
growth curves based on the mean birthweight of infants born at 40 weeks gestation in the study population 
(3178.4g). Continuous variables described using mean and standard deviation (SD) and categorical vari-
ables using frequencies and proportions. Univariable analyses were performed on metabolites and clinical 
characteristics comparing term vs preterm infants using t tests and χ2 or Fischer exact tests (if n ≤5 within 
a category) for continuous and categorical variables, respectively.

Models using metabolic data to predict ultrasound dated prematurity were evaluated in several steps. First, 
the Ryckman model developed previously to predict gestational ages of an infant cohort born Iowa was eval-
uated (validated) for its ability to predict ultrasound-based gestational age in this cohort (Table S1 in the 
Online Supplementary Document) [19]. Second, a model was built specifically from the Busia data using 
cross-validated stepwise multivariable logistic regression. Metabolites with approximately normal distribu-
tions (skew<|1.0|), birthweight, and sex were permitted to enter the model and a P < 0.05 was required to 
remain in the model. Overall model performance was evaluated using area under receiver operating char-
acteristic curve (AUC) and odds ratios (OR) with 95% confidence intervals (CI) for individual variables. 
The variables that formed the final model were then input into a linear regression to obtain specific pre-
dicted gestational ages for each infant. Performance of the linear model was examined using adjusted R2. 
Correspondence of the model-determined gestational ages to the ultrasound-determined gestational ages 
was also examined specifically in infants born SGA. The ability of both models to correctly classify preterm 
and term birth was assessed using sensitivity, specificity, positive predictive value (PPV), negative predic-
tive value (NPV), and accuracy. This same model building and evaluating process and the same comparative 
analyses were performed using the results from the cord blood specimens with overall results compared to 
those from the heel-stick samples.

All analyses were performed using SAS 9.4 (SAS institute, Cary, NC, USA).
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RESULTS
Heel-stick blood spots were collected from 666 of the 687 (96.9%) live born infants in the trial, of those, 39 
(5.9%) had been born preterm per ultrasound dating. SGA rates in this population were 17% and 13.5% by 
intergrowth and WHO respectively. Infants born preterm were more likely than their term counterparts to 
have lower birthweights, and infants born term were more likely to be singletons than those born preterm. 
We found no statistically significant difference in sex, SGA, or age at specimen collection between infants born 
term and preterm (Table 1). There were 640 infants with blood spots from cord blood, and 36 (5.6%) were 
born preterm as determined by ultrasound. Differences between term and preterm infants within this subset 
were similar to those above (Table S2 in the Online Supplementary Document).

Table 1. Univariable analyses of clinical characteristics in infants born term and preterm with heel-stick blood spots col-
lected

Heel
Total Term Preterm P-value
n = 666 n = 627 n = 39

Gestational age* (weeks), mean (SD) 39.1 (1.7) 39.4 (1.2) 34.4 (2.0) <0.001

Gestational age category* (completed weeks), n (%): <0.001

≥37 627 (94.1) 627 (100) 0 (0.0)

32-36 36 (5.4) 0 (0.0) 36 (92.3)

<32 3 (0.5) 0 (0.0) 3 (7.7)

Birthweight (grams), mean (SD) 3036.8 (455.6) 3086.7 (401.7) 2235.1 (523.5) <0.001

Birthweight category (grams), n (%): <0.001

≥4000 12 (1.8) 12 (1.9) 0 (0)

3500-3999 96 (14.4) 96 (15.3) 0 (0)

3000-3499 263 (34.5) 261 (41.6) 2 (5.1)

2500-2999 237 (35.6) 225 (35.9) 12 (30.8)

2000-2499 42 (6.3) 30 (4.8) 12 (30.8)

1500-1999 13 (2.0) 3 (0.5) 10 (25.6)

1000-1499 3 (0.5) 0 (0.0) 3 (7.69)

<1000 0 (0.0) 0 (0.0) 0 (0.0)

Age at collection (hours), mean (SD) 1.78 (4.22) 1.7 (4.3) 2.4 (3.5) 0.366

Sex n (%): 0.705

Male 327 (49.1) 309 (49.3) 18 (46.2)

Female 339 (50.9) 318 (50.7) 21 (53.9)

Multiple gestation 25 (3.8) 17 (2.7) 8 (20.5) <0.001

SGA n (%):

Intergrowth 113 (17.0) 108 (17.2) 5 (12.8) 0.477

Busia specific 90 (13.5) 81 (12.9) 9 (23.1) 0.072

Treatment arm 0.034†

DP 332 (49.9) 319 (50.9) 13 (33.3)

SP 334 (50.1) 308 (49.1) 26 (66.7)

SD – standard deviation, SGA – small for gestational age, DP – dihydroartemisinin-piperaquine, SP – sulfadoxine-pyrimethamine
*As measured by ultrasound between 12-20 weeks.
†Each infant counted even if part of a multiple gestation (insignificant when calculated by maternal delivery). Continuous variables de-
scribed using mean and standard deviation and categorical variables using frequencies and proportions. t tests and χ2 tests for continuous 
and categorical variables respectively were used to compare cases and control.

Metabolic analyses included 47 routinely measured newborn screening metabolites. Of these metabolites, 13 
were excluded for skewness>|1.0|, leaving 34 metabolites for univariable analysis. There were 18 metabolites 
(13 acylcarnitines, 4 amino acids, and TSH) that differed significantly between term and preterm infants. Those 
most strongly associated (P value <0.001) with preterm birth in univariable analysis were C4, C4-DC, C4-
OH, C5, C8, phenylalanine, tyrosine, and TSH (Table 2). Among cord blood measurements, 12 metabolites 
differed significantly between term and preterm infants (Table S3 in the Online Supplementary Document).

The Ryckman model (Table S1 in the Online Supplementary Document) identified 48 (7.2%) infants as be-
ing born preterm. Using birthweight alone identified 128 (19.2%) as being born preterm. The Ryckman model 
gestational ages matched ultrasound gestational ages to within two weeks in 81.2% of infants, and only 4.8% 
were off by more than three weeks (Table 3). Additionally, the Ryckman model accurately classified 95% of 
infants as term or preterm with a sensitivity of 69.2% and a specificity of 96.7% (Table 4). When looking at 
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Table 2. Univariable analyses of mean levels of metabolic makers in infants born term and preterm from heel-stick blood 
spots*

Heel
Term (n = 627) Preterm (n = 39)

Variable Mean (SD) 95% CI Mean (SD) 95% CI
Acylcarnitines:

Free Carnitine 3.02 (0.34) † 2.99 to 3.05 3.13 (0.28) † 3.04 to 3.22

C2 3.08 (0.35) 3.05 to 3.11 3.15 (0.35) 3.03 to 3.26

C3 0.11 (0.39) † 0.08 to 0.14 0.25 (0.43) † 0.11 to 0.39

C4 -1.6 (0.35) ‡ -1.62 to -1.57 -1.31 (0.37) ‡ -1.44 to -1.19

C4-DC -1.79 (0.39) ‡ -1.82 to -1.76 -2.08 (0.31) ‡ -2.18 to -1.98

C4-OH -2.82 (0.38) ‡ -2.85 to -2.79 -2.56 (0.49) ‡ -2.72 to -2.4

C5 -2.1 (0.38) ‡ -2.13 to -2.07 -1.72 (0.44) ‡ -1.87 to -1.58

C5-OH -2.34 (0.34) -2.37 to -2.31 -2.3 (0.35) -2.41 to -2.19

C6 -3.15 (0.35) -3.18 to -3.12 -3.05 (0.39) -3.17 to -2.92

C8 -3.5 (0.45) ‡ -3.54 to -3.46 -3.23 (0.52) ‡ -3.4 to -3.06

C10 -3.26 (0.51) † -3.3 to -3.22 -3.05 (0.63) † -3.25 to -2.85

C12 -2.18 (0.69) -2.23 to -2.13 -2.21 (0.62) -2.41 to -2.01

C12:1 -3.3 (0.58) † -3.35 to -3.26 -3.02 (0.82) † -3.29 to -2.76

C14 -1.7 (0.42) † -1.73 to -1.66 -1.55 (0.45) † -1.7 to -1.4

C14:1 -2.59 (0.6) † -2.63 to -2.54 -2.37 (0.68) † -2.59 to -2.15

C16 0.97 (0.35) 0.95 to 1 0.97 (0.33) 0.87 to 1.08

C16:1 -2.06 (0.38) † -2.09 to -2.03 -1.86 (0.46) † -2.01 to -1.71

C16:1-OH -2.95 (0.34) † -2.97 to -2.92 -3.11 (0.33) † -3.22 to -3.01

C18 0.03 (0.36) 0 to 0.06 -0.03 (0.3) -0.13 to 0.07

C18:1 -0.09 (0.34) -0.11 to -0.06 0.01 (0.35) -0.1 to 0.12

C18:2 -1.76 (0.38) -1.79 to -1.73 -1.84 (0.29) -1.94 to -1.75

Amino acids/intermediates:

Alanine 5.53 (0.28) † 5.51 to 5.56 5.42 (0.32) † 5.32 to 5.53

Arginine 2.12 (0.51) 2.08 to 2.16 2.14 (0.49) 1.98 to 2.3

Citrulline 2.45 (0.23) 2.43 to 2.47 2.47 (0.38) 2.35 to 2.59

Glutamate 5.18 (0.26) 5.16 to 5.2 5.17 (0.24) 5.09 to 5.25

Leucine 4.7 (0.22) † 4.68 to 4.72 4.8 (0.25) † 4.72 to 4.89

Methionine 3.04 (0.21) 3.03 to 3.06 3.01 (0.28) 2.92 to 3.11

Ornithine 3.21 (0.24) 3.19 to 3.23 3.14 (0.31) 3.04 to 3.24

Phenylalanine 4.2 (0.21) ‡ 4.18 to 4.21 4.34 (0.35) ‡ 4.22 to 4.45

Succinylacetone -0.54 (0.17) -0.55 to -0.53 -0.52 (0.2) -0.59 to -0.46

Tyrosine 3.9 (0.24) ‡ 3.88 to 3.92 4.12 (0.47) ‡ 3.97 to 4.27

Valine 4.66 (0.2) 4.65 to 4.68 4.67 (0.2) 4.6 to 4.73

Hormones:

17-hydroxyprogesterone 3.19 (0.63) 3.14 to 3.24 3.21 (0.74) 2.97 to 3.44

Thyroid stimulating hormone 3.33 (0.71) ‡ 3.28 to 3.39 2.81 (0.57) ‡ 2.62 to 3

CI – confidence interval, SD – standard deviation
*All variables are natural log transformed.
†P < 0.05.
‡P < 0.001.

Table 3. Weeks of difference between heel-stick model determined gestational ages and ultrasound determined gestation-
al ages

Ryckman heel Busia heel
Frequency (%) Cumulative frequency (%) Frequency (%) Cumulative frequency (%)

Perfect match* 22 (3.3) 22 (3.3) 43 (6.5) 43 (6.5)

≤1 week 283 (42.5) 305 (45.8) 376 (56.5) 419 (62.9)

≤2 weeks 236 (35.4) 541 (81.2) 175 (26.3) 594 (89.2)

≤3 weeks 94 (14.1) 635 (95.4) 56 (8.4) 650 (97.6)

≤4 weeks 15 (2.3) 650 (97.6) 12 (1.8) 662 (99.4)

≤5 weeks 11 (1.7) 661 (99.3) 3 (0.5) 665 (99.9)

5+ weeks 5 (0.8) 666 (100.0) 1 (0.2) 666 (100.0)

*Perfect match is ±1/2 d.
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SGA specifically, the Ryckman model underestimated gestational age 
by an average of 2.04 and 2.09 weeks, and gestational ages matched 
ultrasound gestational ages within two weeks for 43.4% and 36.6% of 
infants when using intergrowth and WHO SGA, respectively (Table 5).

The Busia specific multivariable model showed the strongest perfor-
mance identifying preterm infants (AUC = 0.953 95% CI = 0.921-0.985) 
and was comprised of 8 variables including birthweight, TSH, alanine, 
tyrosine, C4-DC, C5, C10, and C16:1-OH (Table 6). This model iden-
tified 30 (4.5%) preterm infants, and when used to classify infants as 

Table 4. Classification statistics of the heel-stick models 
used to determine preterm birth

Heel
Ryckman Busia

Sensitivity 69.2 61.5

Specificity 96.7 98.7

Positive predictive value 56.3 75.0

Negative predictive value 98.1 97.6

Accuracy 95.0 96.5

Table 5. Weeks of difference between heel-stick model determined gestational ages and ultrasound determined gestational ages in infants 
born SGA*

Ryckman heel Busia heel
Intergrowth SGA Busia specific SGA Intergrowth SGA Busia Specific SGA

No SGA (n = 553) SGA (n = 113) No SGA (n = 576) SGA (n = 90) No SGA (n = 553) SGA (n = 113) No SGA (n = 576) SGA (n = 90)

Perfect match† 22 (4.0) 0 (0.0) 22 (3.8) 0 (0.0) 35 (6.3) 8 (7.1) 38 (6.6) 5 (5.6)

0-1 week 269 (48.6) 14 (12.4) 272 (47.2) 11 (12.2) 334 (60.4) 42 (37.2) 349 (60.6) 27 (30.0)

1-2 weeks 201 (36.4) 35 (31.0) 214 (37.2) 22 (24.4) 140 (25.3) 35 (31.0) 146 (25.4) 29 (32.2)

2-3 weeks 52 (9.4) 42 (37.2) 58 (10.1) 36 (40.0) 32 (5.8) 24 (21.2) 32 (5.6) 24 (26.7)

3-4 weeks 4 (0.7) 11 (9.7) 4 (0.7) 11 (12.2) 9 (1.6) 3 (2.7) 8 (1.4) 4 (4.4)

4-5 weeks 3 (0.5) 8 (7.1) 4 (0.7) 7 (7.8) 3 (0.5) 0 (0.0) 3 (0.5) 0 (0.0)

5+ weeks 2 (0.4) 3 (2.7) 2 (0.4) 3 (3.3) 0 (0.0) 1 (0.9) 0 (0.0) 1 (1.1)

SGA – small for gestational age
*Values are frequency (column %). Busia specific SGA determined using WHO calculator.
†Perfect Match is ±1/2 d.

preterm or term, this model had a sensitivity of 61.5% and a positive 
predictive value of 75.0% as compared to the Ryckman model’s val-
ues of 69.2% and 56.3%, respectively. Other classification metrics 
were quite similar to the Ryckman model (Table 4). The Busia mod-
el was able to match ultrasound gestational ages within two weeks 
for 89.2% of newborns, and only 2.5% were off by more than three 
weeks (Table 3). It was also more robust to SGA, matching ultra-
sound within two weeks for 75.3% and 67.8% of infants but still un-
derestimating gestational age by an average of 1.05 and 1.08 weeks 
when using intergrowth and WHO SGA, respectively (Table 5).

The multivariable model built using cord blood displayed good per-
formance (AUC = 0.935 95% CI = 0.894-0.977) and consisted of 6 
variables: birthweight, alanine, C4, C4-DC, C4-OH, and C16:1-OH 
(Table S4 in the Online Supplementary Document). The cord 
blood model had lower sensitivity (52.8%) than the heel blood mod-
els, but otherwise, was comparable (Table S5 in the Online Supple-

mentary Document). The cord blood model’s gestational ages matched ultrasound gestational ages in very 
similar proportions as the heel model for both the entire cohort and the SGA infants (Table S6 and S7 in the 
Online Supplementary Document).

DISCUSSION
Gathering reliable epidemiologic information concerning preterm birth in low-income countries is crucial in 
order to better understand the burden of morbidity and mortality stemming from being born preterm and in 
order to allocate resources to alleviate preterm birth [2,17]. Currently, our best methods to determine ges-
tational age in the absence of an early antenatal care ultrasound is to depend on LMP, clinical assessments at 
birth, or in some cases, birthweight alone all of which can be unreliable [9,12-15]. Our study used newborn 
screening-based metabolic models to estimate gestational age at birth, and generated preterm birth rates sim-
ilar to that based on ultrasound (Ryckman model = 7.2%, Busia model = 4.5%, Ultrasound = 5.9%). Moreover, 
the vast majority of calculated gestational ages were within two weeks of ultrasound determined gestational 

Table 6. Cross validated multivariable logistic heel-stick mod-
el built within the Busia cohort

Heel
AUC = 0.953 95% CI = 0.921-0.985

Variable Parameter 
estimate OR (95% CI)

Intercept 8.63 NA

Birthweight (per 100g) -0.55 0.58 (0.48-0.69)

Thyroid stimulating hormone -0.72 0.49 (0.25-0.96)

Alanine -2.53 0.08 (0.01-0.49)

Tyrosine -0.94 0.39 (0.13-1.13)

C4-DC -2.13 0.12 (0.02-0.71)

C5 -1.95 0.14 (0.03-0.6)

C10 2.84 17.2 (3.73-79.27)

C16:1-OH 2.96 19.25 (2.51-147.72)

AUC – area under curve, OR – odds ratio, CI – confidence interval
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age (Ryckman model = 81.2%, Busia model = 89.2%). In comparison to LMP and neonatal assessments like 
the Ballard and Dubowitz scores, our models of estimation perform similarly to those methods used in ideal 
settings. If, however, there is late entry to antenatal care for LMP or a lack of time and resources to devote to 
training and performing neonatal assessments (both common in low resource settings), then the accuracy of 
these alternative methods drastically declines (>±3 weeks) whereas our model should remain robust [9,12-15]. 
Overall, our results suggest that heel stick-based metabolic modeling could be a more scalable and accurate way 
to measure gestational age compared to traditional physical exam-based scores in the absence of ultrasound.

The Ryckman model was originally developed within a cohort of infants born in Iowa, and was one of three 
models built by research groups working cooperatively in North America [18-20]. Despite the population in 
Iowa being remarkably different from our validation population in Busia, the model still performed reasonably 
well suggesting it may be generalizable. Nevertheless, we built a model exclusively within the Busia population 
to elucidate any unique metabolic signals between populations. We found that all seven metabolic variables 
of importance to the Busia model were also present in the Ryckman model suggesting that metabolic profiles 
may only need to be calibrated to specific populations rather than completely altered.

Of particular importance within low-income countries where rates of infants born SGA has been estimated 
to reach 27% [28], is the impact of growth restriction on the ability to determine gestational age. Given the 
unique risks for mortality and morbidity associated with SGA [29], it is important for a measure of gestational 
age to differentiate between an infant born preterm, SGA, or both. Clinical assessments including those by Bal-
lard and Dubowitz tend to be prone to the underestimation of gestational age in infants born SGA as they are 
more likely to exhibit less mature physical characteristics and behavior [9], and using birthweight alone will 
also underestimate gestational age. In our study, the Ryckman model underestimated gestational age in infants 
born SGA by an average of about 2 weeks, but the Busia model reduced this to an average underestimation of 
a little over 1 week. While underestimation remains a problem, our results suggest that tuning models to the 
local population may help in the discrimination of infants born SGA.

The models from heel-stick blood spots and cord blood were compared to determine if both methods could be 
used interchangeably. Having multiple methodologies that are reliable would prove useful in situations where 
heel-sticks aren’t ideal – cord blood is readily available – or where cultural customs make one collection type 
preferential. We found, however, that models built from heel-stick blood spots are better by most metrics in-
cluding correspondence to ultrasound gestational ages, classification measures, and performance within SGA 
infants. This boosted performance is likely the result of the heel-stick models relying solely on samples tak-
en directly from the infant, which may be more representative of the infant’s physiology as compared to cord 
specimens.

The estimated preterm birth rate in Sub-Saharan Africa is approximately 12.0% (CI 8.6%-16.7%) though it 
varies greatly between countries and studies based on a number of factors including access to health care, ges-
tational age measurement tool, and differing definitions of viability and preterm birth [2]. In our study, both 
the ultrasound determined preterm birth rate and model determined rates were much lower than would be 
expected for the region. One possible explanation for this discrepancy is that the women in our trial were 
healthier and had better access to prenatal care than general population. Women enrolled in the clinical tri-
al received extra antenatal care visits, antibiotics and other medications, prenatal supplements, and malaria 
chemoprevention that a majority of women in low-income regions have limited access to. It is also possible 
that the difference reflects some overestimation in the global estimates, since they often include birthweight 
as surrogate for prematurity.

Strengths and limitations

This study has important strengths and limitations to consider. A major strength of the study is the ability 
to compare our model determined gestational ages to the gold standard early pregnancy ultrasounds, which 
are relatively rare in low-income countries. Additionally, our study was facilitated by a research infrastruc-
ture that could acquire blood spots and maintain dry cold-chain throughout storage and shipping making the 
mass spectrometry analyses more reliable as we know metabolite concentrations can be affected by a number 
of environmental factors [23]. Likewise, this necessary infrastructure is a significant obstacle to scale up this 
particular method of gestational age determination. Another potential shortcoming of our study is that despite 
participant selection being population based, the women in the study received differential treatment from the 
rest of the population possibly limiting the generalizability of our results. Finally, the Busia specific models re-
lied on a small sample, which restricted the model to using fewer variables and constrained our ability to in-
dependently validate the model in a subset of the population.
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While metabolic gestational age dating may provide an immediate impact by improving preterm birth epide-
miology, there are current limitations to the utility of using metabolic profiles to inform treatment. Currently, 
with sufficient infrastructure, the turnaround time for newborn screening is within 1-2 days. To our knowl-
edge, there is not currently an available facility equipped to handle high throughput mass spectrometry of new-
born samples within Uganda or East Africa, which necessitated shipment of samples out of country resulting 
in significant delays. Future efforts should focus on capacity development in-region not only to expedite ges-
tational age dating, but to facilitate potentially life-saving diagnoses that accompany newborn screening [24].

CONCLUSIONS
Our findings support the notion that newborn screening metabolic profiles from heel-stick blood spots can 
reliably determine gestational age at birth with the additional utility of accurately estimating preterm birth 
rates. Utilizing this novel tool in a more widespread effort can improve preterm birth surveillance and epide-
miology. In the future, if developed, metabolic profiles may help to inform treatment and clinical management 
shortly after delivery.
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